Analysis and geometry of Markov diffusion operators
著者
書誌事項
Analysis and geometry of Markov diffusion operators
(Die Grundlehren der mathematischen Wissenschaften, 348)
Springer, c2014
- : hardback
大学図書館所蔵 全52件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Includes bibliographical references (p. 527-545) and index
内容説明・目次
内容説明
The present volume is an extensive monograph on the analytic and geometric aspects of Markov diffusion operators. It focuses on the geometric curvature properties of the underlying structure in order to study convergence to equilibrium, spectral bounds, functional inequalities such as Poincare, Sobolev or logarithmic Sobolev inequalities, and various bounds on solutions of evolution equations. At the same time, it covers a large class of evolution and partial differential equations.
The book is intended to serve as an introduction to the subject and to be accessible for beginning and advanced scientists and non-specialists. Simultaneously, it covers a wide range of results and techniques from the early developments in the mid-eighties to the latest achievements. As such, students and researchers interested in the modern aspects of Markov diffusion operators and semigroups and their connections to analytic functional inequalities, probabilistic convergence to equilibrium and geometric curvature will find it especially useful. Selected chapters can also be used for advanced courses on the topic.
目次
Introduction.- Part I Markov semigroups, basics and examples: 1.Markov semigroups.- 2.Model examples.- 3.General setting.- Part II Three model functional inequalities: 4.Poincare inequalities.- 5.Logarithmic Sobolev inequalities.- 6.Sobolev inequalities.- Part III Related functional, isoperimetric and transportation inequalities: 7.Generalized functional inequalities.- 8.Capacity and isoperimetry-type inequalities.- 9.Optimal transportation and functional inequalities.- Part IV Appendices: A.Semigroups of bounded operators on a Banach space.- B.Elements of stochastic calculus.- C.Some basic notions in differential and Riemannian geometry.- Notations and list of symbols.- Bibliography.- Index.
「Nielsen BookData」 より