Morse theory and Floer homology
Author(s)
Bibliographic Information
Morse theory and Floer homology
(Universitext)
Springer, c2014
- Other Title
-
Théorie de Morse et homologie de Floer
Available at 39 libraries
  Aomori
  Iwate
  Miyagi
  Akita
  Yamagata
  Fukushima
  Ibaraki
  Tochigi
  Gunma
  Saitama
  Chiba
  Tokyo
  Kanagawa
  Niigata
  Toyama
  Ishikawa
  Fukui
  Yamanashi
  Nagano
  Gifu
  Shizuoka
  Aichi
  Mie
  Shiga
  Kyoto
  Osaka
  Hyogo
  Nara
  Wakayama
  Tottori
  Shimane
  Okayama
  Hiroshima
  Yamaguchi
  Tokushima
  Kagawa
  Ehime
  Kochi
  Fukuoka
  Saga
  Nagasaki
  Kumamoto
  Oita
  Miyazaki
  Kagoshima
  Okinawa
  Korea
  China
  Thailand
  United Kingdom
  Germany
  Switzerland
  France
  Belgium
  Netherlands
  Sweden
  Norway
  United States of America
-
Library, Research Institute for Mathematical Sciences, Kyoto University数研
AUD||1||7200026149632
Note
"Translation from the French language edition: Théorie de Morse et homologie de Floer ... c2010 EDP Sciences, CNRS Éditions, France"--T.p. verso
Includes bibliographical references (p. 585-588) and indexes
Description and Table of Contents
Description
This book is an introduction to modern methods of symplectic topology. It is devoted to explaining the solution of an important problem originating from classical mechanics: the 'Arnold conjecture', which asserts that the number of 1-periodic trajectories of a non-degenerate Hamiltonian system is bounded below by the dimension of the homology of the underlying manifold.
The first part is a thorough introduction to Morse theory, a fundamental tool of differential topology. It defines the Morse complex and the Morse homology, and develops some of their applications.
Morse homology also serves a simple model for Floer homology, which is covered in the second part. Floer homology is an infinite-dimensional analogue of Morse homology. Its involvement has been crucial in the recent achievements in symplectic geometry and in particular in the proof of the Arnold conjecture. The building blocks of Floer homology are more intricate and imply the use of more sophisticated analytical methods, all of which are explained in this second part.
The three appendices present a few prerequisites in differential geometry, algebraic topology and analysis.
The book originated in a graduate course given at Strasbourg University, and contains a large range of figures and exercises. Morse Theory and Floer Homology will be particularly helpful for graduate and postgraduate students.
Table of Contents
Introduction to Part I.- Morse Functions.- Pseudo-Gradients.- The Morse Complex.- Morse Homology, Applications.- Introduction to Part II.- What You Need To Know About Symplectic Geometry.- The Arnold Conjecture and the Floer Equation.- The Maslov Index.- Linearization and Transversality.- Spaces of Trajectories.- From Floer To Morse.- Floer Homology: Invariance.- Elliptic Regularity.- Technical Lemmas.- Exercises for the Second Part.- Appendices: What You Need to Know to Read This Book.
by "Nielsen BookData"