Brownian motion and its applications to mathematical analysis : École d'Été de Probabilités de Saint-Flour XLIII-2013

書誌事項

Brownian motion and its applications to mathematical analysis : École d'Été de Probabilités de Saint-Flour XLIII-2013

Krzysztof Burdzy

(Lecture notes in mathematics, 2106)

Springer, c2014

  • : pbk

大学図書館所蔵 件 / 49

この図書・雑誌をさがす

注記

Includes bibliographical references (p. 133-137)

内容説明・目次

内容説明

These lecture notes provide an introduction to the applications of Brownian motion to analysis and more generally, connections between Brownian motion and analysis. Brownian motion is a well-suited model for a wide range of real random phenomena, from chaotic oscillations of microscopic objects, such as flower pollen in water, to stock market fluctuations. It is also a purely abstract mathematical tool which can be used to prove theorems in "deterministic" fields of mathematics. The notes include a brief review of Brownian motion and a section on probabilistic proofs of classical theorems in analysis. The bulk of the notes are devoted to recent (post-1990) applications of stochastic analysis to Neumann eigenfunctions, Neumann heat kernel and the heat equation in time-dependent domains.

目次

1. Brownian motion.- 2. Probabilistic proofs of classical theorems.- 3. Overview of the "hot spots" problem.- 4. Neumann eigenfunctions and eigenvalues.- 5. Synchronous and mirror couplings.- 6. Parabolic boundary Harnack principle.- 7. Scaling coupling.- 8. Nodal lines.- 9. Neumann heat kernel monotonicity.- 10. Reflected Brownian motion in time dependent domains.

「Nielsen BookData」 より

関連文献: 1件中  1-1を表示

詳細情報

ページトップへ