Hypergeometric summation : an algorithmic approach to summation and special function identities

書誌事項

Hypergeometric summation : an algorithmic approach to summation and special function identities

Wolfram Koepf

(Universitext)

Springer, c2014

2nd ed

この図書・雑誌をさがす
注記

Includes bibliographical references and index

内容説明・目次

内容説明

Modern algorithmic techniques for summation, most of which were introduced in the 1990s, are developed here and carefully implemented in the computer algebra system Maple (TM). The algorithms of Fasenmyer, Gosper, Zeilberger, Petkovsek and van Hoeij for hypergeometric summation and recurrence equations, efficient multivariate summation as well as q-analogues of the above algorithms are covered. Similar algorithms concerning differential equations are considered. An equivalent theory of hyperexponential integration due to Almkvist and Zeilberger completes the book. The combination of these results gives orthogonal polynomials and (hypergeometric and q-hypergeometric) special functions a solid algorithmic foundation. Hence, many examples from this very active field are given. The materials covered are suitable for an introductory course on algorithmic summation and will appeal to students and researchers alike.

目次

Introduction.- The Gamma Function.- Hypergeometric Identities.- Hypergeometric Database.- Holonomic Recurrence Equations.- Gosper's Algorithm.- The Wilf-Zeilberger Method.- Zeilberger's Algorithm.- Extensions of the Algorithms.- Petkov sek's and Van Hoeij's Algorithm.- Differential Equations for Sums.- Hyperexponential Antiderivatives.- Holonomic Equations for Integrals.- Rodrigues Formulas and Generating Functions.

「Nielsen BookData」 より

関連文献: 1件中  1-1を表示
詳細情報
  • NII書誌ID(NCID)
    BB16033746
  • ISBN
    • 9781447164630
  • LCCN
    2014938224
  • 出版国コード
    uk
  • タイトル言語コード
    eng
  • 本文言語コード
    eng
  • 出版地
    London
  • ページ数/冊数
    xvii, 279 p.
  • 大きさ
    24 cm
  • 親書誌ID
ページトップへ