Finiteness properties of arithmetic groups acting on twin buildings

書誌事項

Finiteness properties of arithmetic groups acting on twin buildings

Stefan Witzel

(Lecture notes in mathematics, 2109)

Springer, c2014

大学図書館所蔵 件 / 43

この図書・雑誌をさがす

注記

Includes bibliographical references (p. 101-105) and index

内容説明・目次

内容説明

Providing an accessible approach to a special case of the Rank Theorem, the present text considers the exact finiteness properties of S-arithmetic subgroups of split reductive groups in positive characteristic when S contains only two places. While the proof of the general Rank Theorem uses an involved reduction theory due to Harder, by imposing the restrictions that the group is split and that S has only two places, one can instead make use of the theory of twin buildings.

目次

  • Basic Definitions and Properties.- Finiteness Properties of G(Fq[t]).- Finiteness Properties of G(Fq[t
  • t-1]).- Affine Kac-Moody Groups.- Adding Places.

「Nielsen BookData」 より

関連文献: 1件中  1-1を表示

詳細情報

  • NII書誌ID(NCID)
    BB16282398
  • ISBN
    • 9783319064765
  • LCCN
    2014943904
  • 出版国コード
    sz
  • タイトル言語コード
    eng
  • 本文言語コード
    eng
  • 出版地
    Cham
  • ページ数/冊数
    xvi, 113 p.
  • 大きさ
    24 cm
  • 分類
  • 件名
  • 親書誌ID
ページトップへ