Algebraic K-theory of crystallographic groups : the three-dimensional splitting case

書誌事項

Algebraic K-theory of crystallographic groups : the three-dimensional splitting case

Daniel Scott Farley, Ivonne Johanna Ortiz

(Lecture notes in mathematics, 2113)

Springer, c2014

大学図書館所蔵 件 / 44

この図書・雑誌をさがす

注記

Includes bibliographical references (p. 143-145) and index

内容説明・目次

内容説明

The Farrell-Jones isomorphism conjecture in algebraic K-theory offers a description of the algebraic K-theory of a group using a generalized homology theory. In cases where the conjecture is known to be a theorem, it gives a powerful method for computing the lower algebraic K-theory of a group. This book contains a computation of the lower algebraic K-theory of the split three-dimensional crystallographic groups, a geometrically important class of three-dimensional crystallographic group, representing a third of the total number. The book leads the reader through all aspects of the calculation. The first chapters describe the split crystallographic groups and their classifying spaces. Later chapters assemble the techniques that are needed to apply the isomorphism theorem. The result is a useful starting point for researchers who are interested in the computational side of the Farrell-Jones isomorphism conjecture, and a contribution to the growing literature in the field.

「Nielsen BookData」 より

関連文献: 1件中  1-1を表示

詳細情報

  • NII書誌ID(NCID)
    BB16625880
  • ISBN
    • 9783319081526
  • LCCN
    2014946579
  • 出版国コード
    sz
  • タイトル言語コード
    eng
  • 本文言語コード
    eng
  • 出版地
    Cham
  • ページ数/冊数
    x, 148 p.
  • 大きさ
    24 cm
  • 親書誌ID
ページトップへ