Geometric invariant theory for polarized curves
著者
書誌事項
Geometric invariant theory for polarized curves
(Lecture notes in mathematics, 2122)
Springer, c2014
大学図書館所蔵 全43件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Other authors: Fabio Felici, Margarida Melo, Filippo Viviani
Includes bibliographical references (p. 205-208) and index
内容説明・目次
内容説明
We investigate GIT quotients of polarized curves. More specifically, we study the GIT problem for the Hilbert and Chow schemes of curves of degree d and genus g in a projective space of dimension d-g, as d decreases with respect to g. We prove that the first three values of d at which the GIT quotients change are given by d=a(2g-2) where a=2, 3.5, 4. We show that, for a>4, L. Caporaso's results hold true for both Hilbert and Chow semistability. If 3.5
目次
Introduction.- Singular Curves.- Combinatorial Results.- Preliminaries on GIT.- Potential Pseudo-stability Theorem.- Stabilizer Subgroups.- Behavior at the Extremes of the Basic Inequality.- A Criterion of Stability for Tails.- Elliptic Tails and Tacnodes with a Line.- A Strati_cation of the Semistable Locus.- Semistable, Polystable and Stable Points (part I).- Stability of Elliptic Tails.- Semistable, Polystable and Stable Points (part II).- Geometric Properties of the GIT Quotient.- Extra Components of the GIT Quotient.- Compacti_cations of the Universal Jacobian.- Appendix: Positivity Properties of Balanced Line Bundles.
「Nielsen BookData」 より