Topological modular forms
著者
書誌事項
Topological modular forms
(Mathematical surveys and monographs, v. 201)
American Mathematical Society, c2014
大学図書館所蔵 全34件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Other editors: Christopher L. Douglas, John Francis, André G. Henriques, Michael A. Hill
Includes bibliographical references
内容説明・目次
内容説明
The theory of topological modular forms is an intricate blend of classical algebraic modular forms and stable homotopy groups of spheres. The construction of this theory combines an algebro-geometric perspective on elliptic curves over finite fields with techniques from algebraic topology, particularly stable homotopy theory. It has applications to and connections with manifold topology, number theory, and string theory.
This book provides a careful, accessible introduction to topological modular forms. After a brief history and an extended overview of the subject, the book proper commences with an exposition of classical aspects of elliptic cohomology, including background material on elliptic curves and modular forms, a description of the moduli stack of elliptic curves, an explanation of the exact functor theorem for constructing cohomology theories, and an exploration of sheaves in stable homotopy theory. There follows a treatment of more specialized topics, including localization of spectra, the deformation theory of formal groups, and Goerss--Hopkins obstruction theory for multiplicative structures on spectra. The book then proceeds to more advanced material, including discussions of the string orientation, the sheaf of spectra on the moduli stack of elliptic curves, the homotopy of topological modular forms, and an extensive account of the construction of the spectrum of topological modular forms. The book concludes with the three original, pioneering and enormously influential manuscripts on the subject, by Hopkins, Miller, and Mahowald.
目次
Elliptic genera and elliptic cohomology by C. Redden
Ellliptic curves and modular forms by C. Mautner
The moduli stack of elliptic curves by A. Henriques
The Landweber exact functor theorem by H. Hohnhold
Sheaves in homotopy theory by C. L. Douglas
Bousfield localization and the Hasse square by T. Bauer
The local structure of the moduli stack of formal groups by J. Lurie
Goerss-Hopkins obstruction theory by V. Angeltveit
From spectra to stacks by M. Hopkins
The string orientation by M. Hopkins
The sheaf of E ring spectra by M. Hopkins
The construction of tmf by M. Behrens
The homotopy groups of tmf and of its localizations by A. Henriques
Ellitpic curves and stable homotopy I by M. J. Hopkins and H. R. Miller
From elliptic curves to homotopy theory by M. Hopkins and M. Mahowald
1 E ring spectra by M. J. Hopkins
Glossary by C. L. Douglas, J. Francis, A. G. Henriques, and M. A. Hill
「Nielsen BookData」 より