The quantum case
Author(s)
Bibliographic Information
The quantum case
(Universitext, . Principal bundles)
Springer, c2015
Available at 19 libraries
  Aomori
  Iwate
  Miyagi
  Akita
  Yamagata
  Fukushima
  Ibaraki
  Tochigi
  Gunma
  Saitama
  Chiba
  Tokyo
  Kanagawa
  Niigata
  Toyama
  Ishikawa
  Fukui
  Yamanashi
  Nagano
  Gifu
  Shizuoka
  Aichi
  Mie
  Shiga
  Kyoto
  Osaka
  Hyogo
  Nara
  Wakayama
  Tottori
  Shimane
  Okayama
  Hiroshima
  Yamaguchi
  Tokushima
  Kagawa
  Ehime
  Kochi
  Fukuoka
  Saga
  Nagasaki
  Kumamoto
  Oita
  Miyazaki
  Kagoshima
  Okinawa
  Korea
  China
  Thailand
  United Kingdom
  Germany
  Switzerland
  France
  Belgium
  Netherlands
  Sweden
  Norway
  United States of America
Note
Includes bibliographical references (p. 339-342) and index
Description and Table of Contents
Description
This introductory text is the first book about quantum principal bundles and their quantum connections which are natural generalizations to non-commutative geometry of principal bundles and their connections in differential geometry. To make for a more self-contained book there is also much background material on Hopf algebras, (covariant) differential calculi, braid groups and compatible conjugation operations. The approach is slow paced and intuitive in order to provide researchers and students in both mathematics and physics ready access to the material.
Table of Contents
Introduction.- First Order Differential Calculus.- Fodc's of a Hopf Algebra.- Adjoint Co-action.- Covariant Bimodules.- Covariant Fodc's.- The Braid Groups.- An Interlude: Some Abstract Nonsense.- The Braided Exterior Algebra.- Higher Order Differential Calculus.- Structures.- Quantum Principal Bundles.- Finite Classical Groups.- Dunkl Operators as Covariant Derivatives in a QPB.- What Next?.
by "Nielsen BookData"