Pseudo-reductive groups
著者
書誌事項
Pseudo-reductive groups
(New mathematical monographs, 26)
Cambridge University Press, 2015
2nd ed
- : hardback
大学図書館所蔵 全11件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Include bibliographical references (p. 656-658) and index
内容説明・目次
内容説明
Pseudo-reductive groups arise naturally in the study of general smooth linear algebraic groups over non-perfect fields and have many important applications. This monograph provides a comprehensive treatment of the theory of pseudo-reductive groups and gives their classification in a usable form. In this second edition there is new material on relative root systems and Tits systems for general smooth affine groups, including the extension to quasi-reductive groups of famous simplicity results of Tits in the semisimple case. Chapter 9 has been completely rewritten to describe and classify pseudo-split absolutely pseudo-simple groups with a non-reduced root system over arbitrary fields of characteristic 2 via the useful new notion of 'minimal type' for pseudo-reductive groups. Researchers and graduate students working in related areas, such as algebraic geometry, algebraic group theory, or number theory will value this book, as it develops tools likely to be used in tackling other problems.
目次
- Preface to the second edition
- Introduction
- Terminology, conventions, and notation
- Part I. Constructions, Examples, and Structure Theory: 1. Overview of pseudo-reductivity
- 2. Root groups and root systems
- 3. Basic structure theory
- Part II. Standard Presentations and Their Applications: 4. Variation of (G', k'/k, T', C)
- 5. Ubiquity of the standard construction
- 6. Classification results
- Part III. General Classification and Applications: 7. The exotic constructions
- 8. Preparations for classification in characteristics 2 and 3
- 9. Absolutely pseudo-simple groups in characteristic 2
- 10. General case
- 11. Applications
- Part IV. Appendices: A. Background in linear algebraic groups
- B. Tits' work on unipotent groups in nonzero characteristic
- C. Rational conjugacy in connected groups
- References
- Index.
「Nielsen BookData」 より