Arithmetic and geometry
Author(s)
Bibliographic Information
Arithmetic and geometry
(London Mathematical Society lecture note series, 420)
Cambridge University Press, 2015
- : pbk
Available at 42 libraries
  Aomori
  Iwate
  Miyagi
  Akita
  Yamagata
  Fukushima
  Ibaraki
  Tochigi
  Gunma
  Saitama
  Chiba
  Tokyo
  Kanagawa
  Niigata
  Toyama
  Ishikawa
  Fukui
  Yamanashi
  Nagano
  Gifu
  Shizuoka
  Aichi
  Mie
  Shiga
  Kyoto
  Osaka
  Hyogo
  Nara
  Wakayama
  Tottori
  Shimane
  Okayama
  Hiroshima
  Yamaguchi
  Tokushima
  Kagawa
  Ehime
  Kochi
  Fukuoka
  Saga
  Nagasaki
  Kumamoto
  Oita
  Miyazaki
  Kagoshima
  Okinawa
  Korea
  China
  Thailand
  United Kingdom
  Germany
  Switzerland
  France
  Belgium
  Netherlands
  Sweden
  Norway
  United States of America
-
Library, Research Institute for Mathematical Sciences, Kyoto University数研
: pbkS||LMS||420200033872479
Note
Other editors; Gerd Faltings, D.R. Heath-Brown, Yu.V. Manin, B.Z. Moroz, Jean-Pierre Wintenberger
Includes bibliographical references
Description and Table of Contents
Description
The 'Arithmetic and Geometry' trimester, held at the Hausdorff Research Institute for Mathematics in Bonn, focussed on recent work on Serre's conjecture and on rational points on algebraic varieties. The resulting proceedings volume provides a modern overview of the subject for graduate students in arithmetic geometry and Diophantine geometry. It is also essential reading for any researcher wishing to keep abreast of the latest developments in the field. Highlights include Tim Browning's survey on applications of the circle method to rational points on algebraic varieties and Per Salberger's chapter on rational points on cubic hypersurfaces.
Table of Contents
- Preface Luis Dieulefait, Gerd Faltings, D. R. Heath-Brown, Yuri I. Manin, B. Z. Moroz and Jean-Pierre Wintenberger
- Introduction
- List of participants
- Trimester seminar
- Workshop on the Serre conjecture
- The research conference
- 1. Galois groups of local fields, Lie algebras, and ramification Victor Abrashkin
- 2. A characterisation of ordinary modular eigenforms with CM Rajender Adibhatla and Panagiotis Tsaknias
- 3. Selmer complexes and p-adic Hodge theory Denis Benois
- 4. A survey of applications of the circle method to rational points T. D. Browning
- 5. Arithmetic differential equations of Painleve VI type Alexandru Buium and Yuri I. Manin
- 6. Differential calculus with integers Alexandru Buium
- 7. Un calcul de groupe de Brauer et une application arithmetique Jean-Louis Colliot-Thelene
- 8. Connectedness of Hecke algebras and the Rayuela conjecture: a path to functoriality and modularity Luis Dieulefait and Ariel Pacetti
- 9. Big image of Galois representations and congruence ideals Haruzo Hida and Jacques Tilouine
- 10. The skew-symmetric pairing on the Lubin-Tate formal module M. A. Ivanov and S. V. Vostokov
- 11. Equations in matrix groups and algebras over number fields and rings: prolegomena to a lowbrow noncommutative Diophantine geometry Boris Kunyavskii
- 12. On the -adic regulator as an ingredient of Iwasawa theory L. V. Kuz'min
- 13. On a counting problem for G-shtukas Ngo Dac Tuan
- 14. Modular forms and Calabi-Yau varieties Kapil Paranjape and Dinakar Ramakrishnan
- 15. Derivative of symmetric square p-adic L-functions via pull-back formula Giovanni Rosso
- 16. Uniform bounds for rational points on cubic hypersurfaces Per Salberger
- 17. Descent on toric fibrations Alexei N. Skorobogatov
- 18. On filtrations of vector bundles over P1Z A. Smirnov
- 19. On the dihedral Euler characteristics of Selmer groups of Abelian varieties Jeanine Van Order
- 20. CM values of higher Green's functions and regularized Petersson products Maryna Viazovska.
by "Nielsen BookData"