Quantum Lie theory : a multilinear approach
著者
書誌事項
Quantum Lie theory : a multilinear approach
(Lecture notes in mathematics, 2150)
Springer, c2015
大学図書館所蔵 件 / 全40件
-
該当する所蔵館はありません
- すべての絞り込み条件を解除する
注記
Includes bibliographical references (p. 289-297) and index
内容説明・目次
内容説明
This is an introduction to the mathematics behind the phrase "quantum Lie algebra". The numerous attempts over the last 15-20 years to define a quantum Lie algebra as an elegant algebraic object with a binary "quantum" Lie bracket have not been widely accepted. In this book, an alternative approach is developed that includes multivariable operations. Among the problems discussed are the following: a PBW-type theorem; quantum deformations of Kac--Moody algebras; generic and symmetric quantum Lie operations; the Nichols algebras; the Gurevich--Manin Lie algebras; and Shestakov--Umirbaev operations for the Lie theory of nonassociative products. Opening with an introduction for beginners and continuing as a textbook for graduate students in physics and mathematics, the book can also be used as a reference by more advanced readers. With the exception of the introductory chapter, the content of this monograph has not previously appeared in book form.
目次
Elements of noncommutative algebra.- Poincare-Birkhoff-Witt basis.- Quantizations of Kac-Moody algebras.- Algebra of skew-primitive elements.- Multilinear operations.- Braided Hopf algebras.- Binary structures.- Algebra of primitive nonassociative polynomials.
「Nielsen BookData」 より