The universe of conics : from the ancient Greeks to 21st century developments
Author(s)
Bibliographic Information
The universe of conics : from the ancient Greeks to 21st century developments
Springer Spektrum, c2016
Available at 4 libraries
  Aomori
  Iwate
  Miyagi
  Akita
  Yamagata
  Fukushima
  Ibaraki
  Tochigi
  Gunma
  Saitama
  Chiba
  Tokyo
  Kanagawa
  Niigata
  Toyama
  Ishikawa
  Fukui
  Yamanashi
  Nagano
  Gifu
  Shizuoka
  Aichi
  Mie
  Shiga
  Kyoto
  Osaka
  Hyogo
  Nara
  Wakayama
  Tottori
  Shimane
  Okayama
  Hiroshima
  Yamaguchi
  Tokushima
  Kagawa
  Ehime
  Kochi
  Fukuoka
  Saga
  Nagasaki
  Kumamoto
  Oita
  Miyazaki
  Kagoshima
  Okinawa
  Korea
  China
  Thailand
  United Kingdom
  Germany
  Switzerland
  France
  Belgium
  Netherlands
  Sweden
  Norway
  United States of America
Note
Includes bibliographical references (p. [480]-482) and index
Description and Table of Contents
Description
This text presents the classical theory of conics in a modern form. It includes many novel results that are not easily accessible elsewhere. The approach combines synthetic and analytic methods to derive projective, affine and metrical properties, covering both Euclidean and non-Euclidean geometries.
With more than two thousand years of history, conic sections play a fundamental role in numerous fields of mathematics and physics, with applications to mechanical engineering, architecture, astronomy, design and computer graphics.
This text will be invaluable to undergraduate mathematics students, those in adjacent fields of study, and anyone with an interest in classical geometry.
Augmented with more than three hundred fifty figures and photographs, this innovative text will enhance your understanding of projective geometry, linear algebra, mechanics, and differential geometry, with careful exposition and many illustrative exercises.
Table of Contents
1 Introduction.- 2 Euclidean plane.- 3 Differential Geometry.- 4 Eucledian 3-space.- 5 Projective Geometry.- 6 Projective conics.- 7 Polarities and pencils.- 8 Affine Geometry.- 9 Special problems.- 10 Other geometries.- Index.
by "Nielsen BookData"