Iterative solution of large sparse systems of equations
Author(s)
Bibliographic Information
Iterative solution of large sparse systems of equations
(Applied mathematical sciences, v. 95)
Springer, c2016
2nd ed
Available at / 12 libraries
-
Library, Research Institute for Mathematical Sciences, Kyoto University数研
HAC||6||3(2)200035597202
-
No Libraries matched.
- Remove all filters.
Note
Includes bibliographical references (p. 483-499) and index
Description and Table of Contents
Description
In the second edition of this classic monograph, complete with four new chapters and updated references, readers will now have access to content describing and analysing classical and modern methods with emphasis on the algebraic structure of linear iteration, which is usually ignored in other literature.
The necessary amount of work increases dramatically with the size of systems, so one has to search for algorithms that most efficiently and accurately solve systems of, e.g., several million equations. The choice of algorithms depends on the special properties the matrices in practice have. An important class of large systems arises from the discretization of partial differential equations. In this case, the matrices are sparse (i.e., they contain mostly zeroes) and well-suited to iterative algorithms.
The first edition of this book grew out of a series of lectures given by the author at the Christian-Albrecht University of Kiel to students of mathematics. The second edition includes quite novel approaches.
Table of Contents
Part I: Linear Iterations.- Introduction.- Iterative Methods.- Classical Linear Iterations in the Positive Definite Case.- Analysis of Classical Iterations Under Special Structural Conditions.- Algebra of Linear Iterations.- Analysis of Positive Definite Iterations.- Generation of Iterations. Part II: Semi-Iterations and Krylov Methods.- Semi-Iterative Methods.- Gradient Methods.- Conjugate Gradient Methods and Generalizations.- Part III: Special Iterations.- Multigrid Iterations.- Domain Decomposition and Subspace Methods.- H-LU Iteration.- Tensor-based Methods.- Appendices.
by "Nielsen BookData"