Monodromy and resurgence
著者
書誌事項
Monodromy and resurgence
(Lecture notes in mathematics, 2153 . Divergent series,
Springer, c2016
- : [pbk.]
大学図書館所蔵 件 / 全41件
-
該当する所蔵館はありません
- すべての絞り込み条件を解除する
注記
Includes bibliographical references and index
内容説明・目次
内容説明
Providing an elementary introduction to analytic continuation and monodromy, the first part of this volume applies these notions to the local and global study of complex linear differential equations, their formal solutions at singular points, their monodromy and their differential Galois groups. The Riemann-Hilbert problem is discussed from Bolibrukh's point of view.
The second part expounds 1-summability and Ecalle's theory of resurgence under fairly general conditions. It contains numerous examples and presents an analysis of the singularities in the Borel plane via "alien calculus", which provides a full description of the Stokes phenomenon for linear or non-linear differential or difference equations.
The first of a series of three, entitled Divergent Series, Summability and Resurgence, this volume is aimed at graduate students, mathematicians and theoretical physicists interested in geometric, algebraic or local analytic properties of dynamical systems. It includes useful exercises with solutions. The prerequisites are a working knowledge of elementary complex analysis and differential algebra.
目次
Preface.-Preface to the three volumes.- Part I:Monodromy in Linear Differential Equations.- 1 analytic continuation and monodromy.- Differential Galois Theory.- Inverse Problems.- The Riemann-Hilbert problem.- Part II: Introduction to 1-Summability and Resurgence.- 5 Borel-Laplace Summation.- Resurgent Functions and Alien Calculus.- the Resurgent Viewpoint on Holomorphic Tangent-to-Identity Germs.- Acknowledgements.- Index.
「Nielsen BookData」 より