Noncommutative geometry and optimal transport : Workshop on Noncommutative Geometry and Optimal Transport, November 27, 2014, Besançon, France
Author(s)
Bibliographic Information
Noncommutative geometry and optimal transport : Workshop on Noncommutative Geometry and Optimal Transport, November 27, 2014, Besançon, France
(Contemporary mathematics, 676)
American Mathematical Society, c2016
- Other Title
-
NCG & optimal transport
Available at 27 libraries
  Aomori
  Iwate
  Miyagi
  Akita
  Yamagata
  Fukushima
  Ibaraki
  Tochigi
  Gunma
  Saitama
  Chiba
  Tokyo
  Kanagawa
  Niigata
  Toyama
  Ishikawa
  Fukui
  Yamanashi
  Nagano
  Gifu
  Shizuoka
  Aichi
  Mie
  Shiga
  Kyoto
  Osaka
  Hyogo
  Nara
  Wakayama
  Tottori
  Shimane
  Okayama
  Hiroshima
  Yamaguchi
  Tokushima
  Kagawa
  Ehime
  Kochi
  Fukuoka
  Saga
  Nagasaki
  Kumamoto
  Oita
  Miyazaki
  Kagoshima
  Okinawa
  Korea
  China
  Thailand
  United Kingdom
  Germany
  Switzerland
  France
  Belgium
  Netherlands
  Sweden
  Norway
  United States of America
-
Library, Research Institute for Mathematical Sciences, Kyoto University数研
S||CONM||676200035945016
Note
Includes bibliographical references
Description and Table of Contents
Description
This volume contains the proceedings of the Workshop on Noncommutative Geometry and Optimal Transport, held on November 27, 2014, in Besancon, France.
The distance formula in noncommutative geometry was introduced by Connes at the end of the 1980s. It is a generalization of Riemannian geodesic distance that makes sense in a noncommutative setting, and provides an original tool to study the geometry of the space of states on an algebra. It also has an intriguing echo in physics, for it yields a metric interpretation for the Higgs field. In the 1990s, Rieffel noticed that this distance is a noncommutative version of the Wasserstein distance of order 1 in the theory of optimal transport. More exactly, this is a noncommutative generalization of Kantorovich dual formula of the Wasserstein distance.
Connes distance thus offers an unexpected connection between an ancient mathematical problem and the most recent discovery in high energy physics. The meaning of this connection is far from clear. Yet, Rieffel'sobservation suggests that Connes distance may provide an interesting starting point for a theory of optimal transport in noncommutative geometry.
This volume contains several review papers that will give the reader an extensive introduction to the metric aspect of noncommutative geometry and its possible interpretation as a Wasserstein distance on a quantum space, as well as several topic papers.
by "Nielsen BookData"