Introduction to partial differential equations
Author(s)
Bibliographic Information
Introduction to partial differential equations
(Universitext)
Springer, c2016
Available at 16 libraries
  Aomori
  Iwate
  Miyagi
  Akita
  Yamagata
  Fukushima
  Ibaraki
  Tochigi
  Gunma
  Saitama
  Chiba
  Tokyo
  Kanagawa
  Niigata
  Toyama
  Ishikawa
  Fukui
  Yamanashi
  Nagano
  Gifu
  Shizuoka
  Aichi
  Mie
  Shiga
  Kyoto
  Osaka
  Hyogo
  Nara
  Wakayama
  Tottori
  Shimane
  Okayama
  Hiroshima
  Yamaguchi
  Tokushima
  Kagawa
  Ehime
  Kochi
  Fukuoka
  Saga
  Nagasaki
  Kumamoto
  Oita
  Miyazaki
  Kagoshima
  Okinawa
  Korea
  China
  Thailand
  United Kingdom
  Germany
  Switzerland
  France
  Belgium
  Netherlands
  Sweden
  Norway
  United States of America
Note
Includes bibliographical references (p. 281) and index
Description and Table of Contents
Description
This modern take on partial differential equations does not require knowledge beyond vector calculus and linear algebra. The author focuses on the most important classical partial differential equations, including conservation equations and their characteristics, the wave equation, the heat equation, function spaces, and Fourier series, drawing on tools from analysis only as they arise.
Within each section the author creates a narrative that answers the five questions:
What is the scientific problem we are trying to understand?
How do we model that with PDE?
What techniques can we use to analyze the PDE?
How do those techniques apply to this equation?
What information or insight did we obtain by developing and analyzing the PDE?
The text stresses the interplay between modeling and mathematical analysis, providing a thorough source of problems and an inspiration for the development of methods.
Table of Contents
1. Introduction.- 2. Preliminaries.- 3. Conservation Equations and Characteristics.- 4. The Wave Equation.- 5. Separation of Variables.- 6. The Heat Equation.- 7. Function Spaces.- 8. Fourier Series.- 9. Maximum Principles.- 10. Weak Solutions.- 11. Variational Methods.- 12. Distributions.- 13. The Fourier Transform.- A. Appendix: Analysis Foundations.- References.- Notation Guide.- Index.
by "Nielsen BookData"