Numerical methods for stochastic partial differential equations with white noise
Author(s)
Bibliographic Information
Numerical methods for stochastic partial differential equations with white noise
(Applied mathematical sciences, v. 196)
Springer, c2017
- softcover
Available at 16 libraries
  Aomori
  Iwate
  Miyagi
  Akita
  Yamagata
  Fukushima
  Ibaraki
  Tochigi
  Gunma
  Saitama
  Chiba
  Tokyo
  Kanagawa
  Niigata
  Toyama
  Ishikawa
  Fukui
  Yamanashi
  Nagano
  Gifu
  Shizuoka
  Aichi
  Mie
  Shiga
  Kyoto
  Osaka
  Hyogo
  Nara
  Wakayama
  Tottori
  Shimane
  Okayama
  Hiroshima
  Yamaguchi
  Tokushima
  Kagawa
  Ehime
  Kochi
  Fukuoka
  Saga
  Nagasaki
  Kumamoto
  Oita
  Miyazaki
  Kagoshima
  Okinawa
  Korea
  China
  Thailand
  United Kingdom
  Germany
  Switzerland
  France
  Belgium
  Netherlands
  Sweden
  Norway
  United States of America
-
Library, Research Institute for Mathematical Sciences, Kyoto University数研
ZHA||14||1200037159648
Note
Includes bibliographical references (p. 359-390) and index
Softcover reprint of the hardcover 1st edition 2017.
Description and Table of Contents
Description
This book covers numerical methods for stochastic partial differential equations with white noise using the framework of Wong-Zakai approximation. The book begins with some motivational and background material in the introductory chapters and is divided into three parts. Part I covers numerical stochastic ordinary differential equations. Here the authors start with numerical methods for SDEs with delay using the Wong-Zakai approximation and finite difference in time. Part II covers temporal white noise. Here the authors consider SPDEs as PDEs driven by white noise, where discretization of white noise (Brownian motion) leads to PDEs with smooth noise, which can then be treated by numerical methods for PDEs. In this part, recursive algorithms based on Wiener chaos expansion and stochastic collocation methods are presented for linear stochastic advection-diffusion-reaction equations. In addition, stochastic Euler equations are exploited as an application of stochastic collocation methods, where a numerical comparison with other integration methods in random space is made. Part III covers spatial white noise. Here the authors discuss numerical methods for nonlinear elliptic equations as well as other equations with additive noise. Numerical methods for SPDEs with multiplicative noise are also discussed using the Wiener chaos expansion method. In addition, some SPDEs driven by non-Gaussian white noise are discussed and some model reduction methods (based on Wick-Malliavin calculus) are presented for generalized polynomial chaos expansion methods. Powerful techniques are provided for solving stochastic partial differential equations.
This book can be considered as self-contained. Necessary background knowledge is presented in the appendices. Basic knowledge of probability theory and stochastic calculus is presented in Appendix A. In Appendix B some semi-analytical methods for SPDEs are presented. In Appendix C an introduction to Gauss quadrature is provided. In Appendix D, all the conclusions which are needed for proofs are presented, and in Appendix E a method to compute the convergence rate empirically is included.
In addition, the authors provide a thorough review of the topics, both theoretical and computational exercises in the book with practical discussion of the effectiveness of the methods. Supporting Matlab files are made available to help illustrate some of the concepts further. Bibliographic notes are included at the end of each chapter. This book serves as a reference for graduate students and researchers in the mathematical sciences who would like to understand state-of-the-art numerical methods for stochastic partial differential equations with white noise.
Table of Contents
Preface.- Prologue.- Brownian Motion and Stochastic Calculus.- Numerical Methods for Stochastic Differential Equations.- Part I Stochastic Ordinary Differential Equations.- Numerical Schemes for SDEs with Time Delay Using the Wong-Zakai Approximation.- Balanced Numerical Schemes for SDEs with non-Lipschitz Coefficients.- Part II Temporal White Noise.- Wiener Chaos Methods for Linear Stochastic Advection-Diffusion-Reaction Equations.- Stochastic Collocation Methods for Differential Equations with White Noise.- Comparison Between Wiener Chaos Methods and Stochastic Collocation Methods.- Application of Collocation Method to Stochastic Conservation Laws.- Part III Spatial White Noise.- Semilinear Elliptic Equations with Additive Noise.- Multiplicative White Noise: The Wick-Malliavin Approximation.- Epilogue.- Appendices.- A. Basics of Probability.- B. Semi-analytical Methods for SPDEs.- C. Gauss Quadrature.- D. Some Useful Inequalities and Lemmas.- E. Computation of Convergence Rate.
by "Nielsen BookData"