Two-scale approach to oscillatory singularly perturbed transport equations
著者
書誌事項
Two-scale approach to oscillatory singularly perturbed transport equations
(Lecture notes in mathematics, 2190)
Springer, c2017
大学図書館所蔵 全38件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Includes bibliographical references (p. 121-124)
内容説明・目次
内容説明
This book presents the classical results of the two-scale convergence theory and explains - using several figures - why it works. It then shows how to use this theory to homogenize ordinary differential equations with oscillating coefficients as well as oscillatory singularly perturbed ordinary differential equations. In addition, it explores the homogenization of hyperbolic partial differential equations with oscillating coefficients and linear oscillatory singularly perturbed hyperbolic partial differential equations. Further, it introduces readers to the two-scale numerical methods that can be built from the previous approaches to solve oscillatory singularly perturbed transport equations (ODE and hyperbolic PDE) and demonstrates how they can be used efficiently. This book appeals to master's and PhD students interested in homogenization and numerics, as well as to the Iter community.
目次
I Two-Scale Convergence.- 1 Introduction.- 1.1 First Statements on Two-Scale Convergence.- 1.2 Two-Scale Convergence and Homogenization.- 1.2.1 How Homogenization Led to the Concept of Two-Scale Convergence.- 1.2.2 A Remark Concerning Periodicity.- 1.2.3 A Remark Concerning Weak-* Convergence.- 2 Two-Scale Convergence - Definition and Results.- 2.1 Background Material on Two-Scale Convergence.- 2.1.1 Definitions.- 2.1.2 Link with Weak Convergence.- 2.2 Two-Scale Convergence Criteria.- 2.2.1 Injection Lemma.- 2.2.2 Two-Scale Convergence Criterion.- 2.2.3 Strong Two-Scale Convergence Criterion.- 3 Applications.- 3.1 Homogenization of ODE.- 3.1.1 Textbook Case, Setting and Asymptotic Expansion.- 3.1.2 Justification of Asymptotic Expansion Using Two-Scale Convergence.- 3.2 Homogenization of Singularly-Perturbed ODE.- 3.2.1 Equation of Interest and Setting.- 3.2.2 Asymptotic Expansion Results.- 3.2.3 Asymptotic Expansion Calculations.- 3.2.4 Justification Using Two-Scale Convergence I: Results.- 3.2.5 Justification Using Two-Scale Convergence II: Proofs.- 3.3 Homogenization of Hyperbolic PDE.- 3.3.1 Textbook Case and Setting.- 3.3.2 Order-0 Homogenization.- 3.3.3 Order-1 Homogenization.- 3.4 Homogenization of Singularly-Perturbed Hyperbolic PDE.- 3.4.1 Equation of Interest and Setting.- 3.4.2 An a Priori Estimate.- 3.4.3 Weak Formulation with Oscillating Test Functions.- 3.4.4 Order-0 Homogenization - Constraint.- 3.4.5 Order-0 Homogenization - Equation for V.- 3.4.6 Order-1 Homogenization - Preparations: Equations for U and u.- 3.4.7 Order-1 Homogenization - Strong Two-Scale Convergence of u".- 3.4.8 Order-1 Homogenization - The Function W1.- 3.4.9 Order-1 Homogenization - A Priori Estimate and Convergence.- 3.4.10 Order-1 Homogenization - Constraint.- 3.4.11 Order-1 Homogenization - Equation for V1.- 3.4.12 Concerning Numerics.- II Two-Scale Numerical Methods.- 4 Introduction.- 5 Two-Scale Method for Object Drift with Tide.- 5.1 Motivation and Model.- 5.1.1 Motivation.- 5.1.2 Model of Interest.- 5.2 Two-Scale Asymptotic Expansion.- 5.2.1 Asymptotic Expansion.- 5.2.2 Discussion.- 5.3 Two-Scale Numerical Method.- 5.3.1 Construction of the Two-Scale Numerical Method.- 5.3.2 Validation of the Two-Scale Numerical Method.- 6 Two-Scale Method for Beam.- 6.1 Some Words About Beams and Model of Interest.- 6.1.1 Beams.- 6.1.2 Equations of Interest.- 6.1.3 Two-Scale Convergence.- 6.2 Two-Scale PIC Method.- 6.2.1 Formulation of the Two-Scale Numerical Method.- 6.2.2 Numerical Results.
「Nielsen BookData」 より