Gaussian Capacity Analysis
Author(s)
Bibliographic Information
Gaussian Capacity Analysis
(Lecture notes in mathematics, 2225)
Springer, c2018
- : pbk
Available at 37 libraries
  Aomori
  Iwate
  Miyagi
  Akita
  Yamagata
  Fukushima
  Ibaraki
  Tochigi
  Gunma
  Saitama
  Chiba
  Tokyo
  Kanagawa
  Niigata
  Toyama
  Ishikawa
  Fukui
  Yamanashi
  Nagano
  Gifu
  Shizuoka
  Aichi
  Mie
  Shiga
  Kyoto
  Osaka
  Hyogo
  Nara
  Wakayama
  Tottori
  Shimane
  Okayama
  Hiroshima
  Yamaguchi
  Tokushima
  Kagawa
  Ehime
  Kochi
  Fukuoka
  Saga
  Nagasaki
  Kumamoto
  Oita
  Miyazaki
  Kagoshima
  Okinawa
  Korea
  China
  Thailand
  United Kingdom
  Germany
  Switzerland
  France
  Belgium
  Netherlands
  Sweden
  Norway
  United States of America
-
Library, Research Institute for Mathematical Sciences, Kyoto University数研
: pbkL/N||LNM||2225200038744214
Note
Includes bibliographical references (p. 103-106) and index
Description and Table of Contents
Description
This monograph develops the Gaussian functional capacity theory with applications to restricting the Gaussian Campanato/Sobolev/BV space. Included in the text is a new geometric characterization of the Gaussian 1-capacity and the Gaussian Poincare 1-inequality. Applications to function spaces and geometric measures are also presented.
This book will be of use to researchers who specialize in potential theory, elliptic differential equations, functional analysis, probability, and geometric measure theory.
Table of Contents
Gaussian Sobolev p-space.- Gaussian Campanato (p, k)-class.- Gaussian p-capacity.- Restriction of Gaussian Sobolev p-space.- Gaussian 1-capacity to Gaussian -capacity.- Gaussian BV-capacity.
by "Nielsen BookData"