Graphs and geometry
著者
書誌事項
Graphs and geometry
(Colloquium publications / American Mathematical Society, v. 65)
American Mathematical Society, c2019
大学図書館所蔵 全24件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Includes bibliographical references (p. 421-436) and indexes
内容説明・目次
内容説明
Graphs are usually represented as geometric objects drawn in the plane, consisting of nodes and curves connecting them. The main message of this book is that such a representation is not merely a way to visualize the graph, but an important mathematical tool. It is obvious that this geometry is crucial in engineering, for example, if you want to understand rigidity of frameworks and mobility of mechanisms. But even if there is no geometry directly connected to the graph-theoretic problem, a well-chosen geometric embedding has mathematical meaning and applications in proofs and algorithms. This book surveys a number of such connections between graph theory and geometry: among others, rubber band representations, coin representations, orthogonal representations, and discrete analytic functions. Applications are given in information theory, statistical physics, graph algorithms and quantum physics. The book is based on courses and lectures that the author has given over the last few decades and offers readers with some knowledge of graph theory, linear algebra, and probability a thorough introduction to this exciting new area with a large collection of illuminating examples and exercises.
目次
Why are geometric representations interesting?
Planar graphs
Rubber bands
Discrete harmonic functions
Coin representation
Square tilings
Discrete analytic functions
Discrete analytic functions: Statistical physics
Adjacency matrix and its square
Orthogonal representations: Dimension
Orthogonal representations: The smallest cone
Orthogonal representations: Quantum physics
Semidefinite optimization
Stresses
Rigidity and motions of frameworks
The Colin de Verdiere number
Metric representations
Matching and covering in frameworks
Combinatorics of subspaces
Concluding thoughts
Appendix A: Linear algebra
Appendix B: Graphs
Appendix C: Convex bodies
Bibliography
Author index
Subject index
「Nielsen BookData」 より