Probability theory : a comprehensive course
著者
書誌事項
Probability theory : a comprehensive course
(Universitext)
Springer, c2020
3rd ed
大学図書館所蔵 全13件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Includes bibliographical references (p. 691-698) and indexes
内容説明・目次
内容説明
This popular textbook, now in a revised and expanded third edition, presents a comprehensive course in modern probability theory.Probability plays an increasingly important role not only in mathematics, but also in physics, biology, finance and computer science, helping to understand phenomena such as magnetism, genetic diversity and market volatility, and also to construct efficient algorithms. Starting with the very basics, this textbook covers a wide variety of topics in probability, including many not usually found in introductory books, such as:
limit theorems for sums of random variables
martingales
percolation
Markov chains and electrical networks
construction of stochastic processes
Poisson point process and infinite divisibility
large deviation principles and statistical physics
Brownian motion
stochastic integrals and stochastic differential equations.
The presentation is self-contained and mathematically rigorous, with the material on probability theory interspersed with chapters on measure theory to better illustrate the power of abstract concepts.
This third edition has been carefully extended and includes new features, such as concise summaries at the end of each section and additional questions to encourage self-reflection, as well as updates to the figures and computer simulations. With a wealth of examples and more than 290 exercises, as well as biographical details of key mathematicians, it will be of use to students and researchers in mathematics, statistics, physics, computer science, economics and biology.
目次
1 Basic Measure Theory.- 2 Independence.- 3 Generating Functions.- 4 The Integral.- 5 Moments and Laws of Large Numbers.- 6 Convergence Theorems.- 7 Lp-Spaces and the Radon-Nikodym Theorem.- 8 Conditional Expectations.- 9 Martingales.- 10 Optional Sampling Theorems.- 11 Martingale Convergence Theorems and Their Applications.- 12 Backwards Martingales and Exchangeability.- 13 Convergence of Measures.- 14 Probability Measures on Product Spaces.- 15 Characteristic Functions and the Central Limit Theorem.- 16 Infinitely Divisible Distributions.- 17 Markov Chains.- 18 Convergence of Markov Chains.- 19 Markov Chains and Electrical Networks.- 20 Ergodic Theory.- 21 Brownian Motion.- 22 Law of the Iterated Logarithm.- 23 Large Deviations.- 24 The Poisson Point Process.- 25 The Ito Integral.- 26 Stochastic Differential Equations.- References.- Notation Index.- Name Index.- Subject Index.
「Nielsen BookData」 より