Substitution and tiling dynamics : introduction to self-inducing structures : CIRM Jean-Morlet Chair, Fall 2017

書誌事項

Substitution and tiling dynamics : introduction to self-inducing structures : CIRM Jean-Morlet Chair, Fall 2017

Shigeki Akiyama, Pierre Arnoux, editors

(Lecture notes in mathematics, 2273)

Springer, c2020

大学図書館所蔵 件 / 30

この図書・雑誌をさがす

注記

"Société Mathématique de France, SMF"--Cover

Includes bibliographical references and index

内容説明・目次

内容説明

This book presents a panorama of recent developments in the theory of tilings and related dynamical systems. It contains an expanded version of courses given in 2017 at the research school associated with the Jean-Morlet chair program. Tilings have been designed, used and studied for centuries in various contexts. This field grew significantly after the discovery of aperiodic self-similar tilings in the 60s, linked to the proof of the undecidability of the Domino problem, and was driven futher by Dan Shechtman's discovery of quasicrystals in 1984. Tiling problems establish a bridge between the mutually influential fields of geometry, dynamical systems, aperiodic order, computer science, number theory, algebra and logic. The main properties of tiling dynamical systems are covered, with expositions on recent results in self-similarity (and its generalizations, fusions rules and S-adic systems), algebraic developments connected to physics, games and undecidability questions, and the spectrum of substitution tilings.

目次

Delone sets and dynamical systems.- Introduction to hierarchical tiling dynamical systems.- S-adic sequences : dynamics, arithmetic, and geometry.- Operators and Algebras for Aperiodic Tilings.- From games to morphisms.- The Undecidability of the Domino Problem.- Renormalisation for block substitutions.- Yet another characterization of the Pisot conjecture.

「Nielsen BookData」 より

関連文献: 1件中  1-1を表示

詳細情報

ページトップへ