Analysis and linear algebra : the singular value decomposition and applications
Author(s)
Bibliographic Information
Analysis and linear algebra : the singular value decomposition and applications
(Student mathematical library, v. 94)
American Mathematical Society, c2021
- : pbk
Available at 15 libraries
  Aomori
  Iwate
  Miyagi
  Akita
  Yamagata
  Fukushima
  Ibaraki
  Tochigi
  Gunma
  Saitama
  Chiba
  Tokyo
  Kanagawa
  Niigata
  Toyama
  Ishikawa
  Fukui
  Yamanashi
  Nagano
  Gifu
  Shizuoka
  Aichi
  Mie
  Shiga
  Kyoto
  Osaka
  Hyogo
  Nara
  Wakayama
  Tottori
  Shimane
  Okayama
  Hiroshima
  Yamaguchi
  Tokushima
  Kagawa
  Ehime
  Kochi
  Fukuoka
  Saga
  Nagasaki
  Kumamoto
  Oita
  Miyazaki
  Kagoshima
  Okinawa
  Korea
  China
  Thailand
  United Kingdom
  Germany
  Switzerland
  France
  Belgium
  Netherlands
  Sweden
  Norway
  United States of America
-
Library, Research Institute for Mathematical Sciences, Kyoto University数研
: pbkBIS||10||1200041773830
Note
IncludIncludes bibliographical references (p. 209-212) and indexes
Description and Table of Contents
Description
This book provides an elementary analytically inclined journey to a fundamental result of linear algebra: the Singular Value Decomposition (SVD). SVD is a workhorse in many applications of linear algebra to data science. Four important applications relevant to data science are considered throughout the book: determining the subspace that ""best'' approximates a given set (dimension reduction of a data set); finding the ""best'' lower rank approximation of a given matrix (compression and general approximation problems); the Moore-Penrose pseudo-inverse (relevant to solving least squares problems); and the orthogonal Procrustes problem (finding the orthogonal transformation that most closely transforms a given collection to a given configuration), as well as its orientation-preserving version.
The point of view throughout is analytic. Readers are assumed to have had a rigorous introduction to sequences and continuity. These are generalized and applied to linear algebraic ideas. Along the way to the SVD, several important results relevant to a wide variety of fields (including random matrices and spectral graph theory) are explored: the Spectral Theorem; minimax characterizations of eigenvalues; and eigenvalue inequalities. By combining analytic and linear algebraic ideas, readers see seemingly disparate areas interacting in beautiful and applicable ways.
Table of Contents
Introduction
Linear algebra and normed vector spaces
Main tools
The spectral theorem
The singular value decomposition
Applications revisited
A glimpse towards infinite dimensions
Bibliography
Index of notation
Index
by "Nielsen BookData"