Introduction to Lipschitz geometry of singularities : lecture notes of the International School on Singularity Theory and Lipschitz Geometry, Cuernavaca, June 2018
Author(s)
Bibliographic Information
Introduction to Lipschitz geometry of singularities : lecture notes of the International School on Singularity Theory and Lipschitz Geometry, Cuernavaca, June 2018
(Lecture notes in mathematics, 2280)
Springer, c2020
Available at 28 libraries
  Aomori
  Iwate
  Miyagi
  Akita
  Yamagata
  Fukushima
  Ibaraki
  Tochigi
  Gunma
  Saitama
  Chiba
  Tokyo
  Kanagawa
  Niigata
  Toyama
  Ishikawa
  Fukui
  Yamanashi
  Nagano
  Gifu
  Shizuoka
  Aichi
  Mie
  Shiga
  Kyoto
  Osaka
  Hyogo
  Nara
  Wakayama
  Tottori
  Shimane
  Okayama
  Hiroshima
  Yamaguchi
  Tokushima
  Kagawa
  Ehime
  Kochi
  Fukuoka
  Saga
  Nagasaki
  Kumamoto
  Oita
  Miyazaki
  Kagoshima
  Okinawa
  Korea
  China
  Thailand
  United Kingdom
  Germany
  Switzerland
  France
  Belgium
  Netherlands
  Sweden
  Norway
  United States of America
-
Library, Research Institute for Mathematical Sciences, Kyoto University数研
L/N||LNM||2280200040947784
Note
Includes bibliographical references and index
Description and Table of Contents
Description
This book presents a broad overview of the important recent progress which led to the emergence of new ideas in Lipschitz geometry and singularities, and started to build bridges to several major areas of singularity theory. Providing all the necessary background in a series of introductory lectures, it also contains Pham and Teissier's previously unpublished pioneering work on the Lipschitz classification of germs of plane complex algebraic curves.
While a real or complex algebraic variety is topologically locally conical, it is in general not metrically conical; there are parts of its link with non-trivial topology which shrink faster than linearly when approaching the special point. The essence of the Lipschitz geometry of singularities is captured by the problem of building classifications of the germs up to local bi-Lipschitz homeomorphism. The Lipschitz geometry of a singular space germ is then its equivalence class in this category.
The book is aimed at graduate students and researchers from other fields of geometry who are interested in studying the multiple open questions offered by this new subject.
Table of Contents
- Geometric Viewpoint of Milnor's Fibration Theorem. - A Quick Trip into Local Singularities of Complex Curves and Surfaces. - 3-Manifolds and Links of Singularities. - Stratifications, Equisingularity and Triangulation. - Basics on Lipschitz Geometry. - Surface Singularities in R4: First Steps Towards Lipschitz Knot Theory. - An Introduction to Lipschitz Geometry of Complex Singularities. - The biLipschitz Geometry of Complex Curves: An Algebraic Approach. - Ultrametrics and Surface Singularities. - Lipschitz Fractions of a Complex Analytic Algebra and Zariski Saturation.
by "Nielsen BookData"