Hamilton-Jacobi equations : theory and applications
著者
書誌事項
Hamilton-Jacobi equations : theory and applications
(Graduate studies in mathematics, 213)
American Mathematical Society, c2021
- : hardcover
大学図書館所蔵 全24件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Includes bibliographical references (p. 311-318) and index
内容説明・目次
内容説明
This book gives an extensive survey of many important topics in the theory of Hamilton-Jacobi equations with particular emphasis on modern approaches and viewpoints. Firstly, the basic well-posedness theory of viscosity solutions for first-order Hamilton-Jacobi equations is covered. Then, the homogenization theory, a very active research topic since the late 1980s but not covered in any standard textbook, is discussed in depth. Afterwards, dynamical properties of solutions, the Aubry-Mather theory, and weak Kolmogorov-Arnold-Moser (KAM) theory are studied. Both dynamical and PDE approaches are introduced to investigate these theories. Connections between homogenization, dynamical aspects, and the optimal rate of convergence in homogenization theory are given as well.
The book is self-contained and is useful for a course or for references. It can also serve as a gentle introductory reference to the homogenization theory.
目次
Introduction to viscosity solutions for Hamilton-Jacobi equations
First-order Hamilton-Jacobi equations with convex Hamiltonians
First-order Hamilton-Jacobi equations with possibly nonconvex Hamiltonians
Periodic homogenization theory for Hamilton-Jacobi equations
Almost periodic homogenization theory for Hamilton-Jacobi equations
First-order convex Hamilton-Jacobi equations in a torus
Introduction to weak KAM theory
Further properties of the effective Hamiltonians in the convex setting
Notations
Sion's minimax theorem
Characterization of the Legendre transform
Existence and regularity of minimizers for action functionals
Boundary value problems
Sup-convolutions
Sketch of proof of Theorem 6.26
Solutions to some exercises
Bibliography
Index
「Nielsen BookData」 より