Shock waves
著者
書誌事項
Shock waves
(Graduate studies in mathematics, 215)(Applied mathematics)
American Mathematical Society, c2021
- : hardcover
大学図書館所蔵 全22件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Includes bibliographical references (p. 427-433) and index
内容説明・目次
内容説明
This book presents the fundamentals of the shock wave theory. The first part of the book, Chapters 1 through 5, covers the basic elements of the shock wave theory by analyzing the scalar conservation laws.
The main focus of the analysis is on the explicit solution behavior. This first part of the book requires only a course in multi-variable calculus, and can be used as a text for an undergraduate topics course. In the second part of the book, Chapters 6 through 9, this general theory is used to study systems of hyperbolic conservation laws. This is a most significant well-posedness theory for weak solutions of quasilinear evolutionary partial differential equations. The final part of the book, Chapters 10 through 14, returns to the original subject of the shock wave theory by focusing on specific physical models. Potentially interesting questions and research directions are also raised in these chapters.
The book can serve as an introductory text for advanced undergraduate students and for graduate students in mathematics, engineering, and physical sciences. Each chapter ends with suggestions for further reading and exercises for students.
目次
Introduction
Preliminaries
Scalar convex conservation laws
Burgers equation
General scalar conservation laws
System of hyperbolic conservation laws, general theory
Riemann problem
Wave interactions
Well-posedness theory
Viscosity
Relaxation
Nonlinear resonance
Multi-dimensional gas flows
Concluding remarks
Bibliography
Index
「Nielsen BookData」 より