Shock waves
Author(s)
Bibliographic Information
Shock waves
(Graduate studies in mathematics, 215)(Applied mathematics)
American Mathematical Society, c2021
- : hardcover
Available at 22 libraries
  Aomori
  Iwate
  Miyagi
  Akita
  Yamagata
  Fukushima
  Ibaraki
  Tochigi
  Gunma
  Saitama
  Chiba
  Tokyo
  Kanagawa
  Niigata
  Toyama
  Ishikawa
  Fukui
  Yamanashi
  Nagano
  Gifu
  Shizuoka
  Aichi
  Mie
  Shiga
  Kyoto
  Osaka
  Hyogo
  Nara
  Wakayama
  Tottori
  Shimane
  Okayama
  Hiroshima
  Yamaguchi
  Tokushima
  Kagawa
  Ehime
  Kochi
  Fukuoka
  Saga
  Nagasaki
  Kumamoto
  Oita
  Miyazaki
  Kagoshima
  Okinawa
  Korea
  China
  Thailand
  United Kingdom
  Germany
  Switzerland
  France
  Belgium
  Netherlands
  Sweden
  Norway
  United States of America
-
Library, Research Institute for Mathematical Sciences, Kyoto University数研
: hardcoverLIU||11||3200043175652
Note
Includes bibliographical references (p. 427-433) and index
Description and Table of Contents
Description
This book presents the fundamentals of the shock wave theory. The first part of the book, Chapters 1 through 5, covers the basic elements of the shock wave theory by analyzing the scalar conservation laws.
The main focus of the analysis is on the explicit solution behavior. This first part of the book requires only a course in multi-variable calculus, and can be used as a text for an undergraduate topics course. In the second part of the book, Chapters 6 through 9, this general theory is used to study systems of hyperbolic conservation laws. This is a most significant well-posedness theory for weak solutions of quasilinear evolutionary partial differential equations. The final part of the book, Chapters 10 through 14, returns to the original subject of the shock wave theory by focusing on specific physical models. Potentially interesting questions and research directions are also raised in these chapters.
The book can serve as an introductory text for advanced undergraduate students and for graduate students in mathematics, engineering, and physical sciences. Each chapter ends with suggestions for further reading and exercises for students.
Table of Contents
Introduction
Preliminaries
Scalar convex conservation laws
Burgers equation
General scalar conservation laws
System of hyperbolic conservation laws, general theory
Riemann problem
Wave interactions
Well-posedness theory
Viscosity
Relaxation
Nonlinear resonance
Multi-dimensional gas flows
Concluding remarks
Bibliography
Index
by "Nielsen BookData"