Bibliographic Information

Graphs and discrete Dirichlet spaces

Matthias Keller, Daniel Lenz, Radosław K. Wojciechowski

(Die Grundlehren der mathematischen Wissenschaften, v. 358)

Springer, c2021

Available at  / 36 libraries

Search this Book/Journal

Note

Includes bibliographical references (p. 647-662) and index

Description and Table of Contents

Description

The spectral geometry of infinite graphs deals with three major themes and their interplay: the spectral theory of the Laplacian, the geometry of the underlying graph, and the heat flow with its probabilistic aspects. In this book, all three themes are brought together coherently under the perspective of Dirichlet forms, providing a powerful and unified approach. The book gives a complete account of key topics of infinite graphs, such as essential self-adjointness, Markov uniqueness, spectral estimates, recurrence, and stochastic completeness. A major feature of the book is the use of intrinsic metrics to capture the geometry of graphs. As for manifolds, Dirichlet forms in the graph setting offer a structural understanding of the interaction between spectral theory, geometry and probability. For graphs, however, the presentation is much more accessible and inviting thanks to the discreteness of the underlying space, laying bare the main concepts while preserving the deep insights of the manifold case. Graphs and Discrete Dirichlet Spaces offers a comprehensive treatment of the spectral geometry of graphs, from the very basics to deep and thorough explorations of advanced topics. With modest prerequisites, the book can serve as a basis for a number of topics courses, starting at the undergraduate level.

Table of Contents

Part 0 Prelude.- Chapter 0 Finite Graphs.- Part 1 Foundations and Fundamental Topics.- Chapter 1 Infinite Graphs - Key Concepts.- Chapter 2 Infinite Graphs - Toolbox.- Chapter 3 Markov Uniqueness and Essential Self-Adjointness.- Chapter 4 Agmon-Allegretto-Piepenbrink and Persson Theorems.- Chapter 5 Large Time Behavior of the Heat Kernel.- Chapter 6 Recurrence.- Chapter 7 Stochastic Completeness.- Part 2 Classes of Graphs.- Chapter 8 Uniformly Positive Measure.- Chapter 9 Weak Spherical Symmetry.- Chapter 10 Sparseness and Isoperimetric Inequalities.- Part 3 Geometry and Intrinsic Metrics.- Chapter 11 Intrinsic Metrics: Definition and Basic Facts.- Chapter 12 Harmonic Functions and Caccioppoli Theory.- Chapter 13 Spectral Bounds.- Chapter 14 Volume Growth Criterion for Stochastic Completeness and Uniqueness Class.- Appendix A The Spectral Theorem.- Appendix B Closed Forms on Hilbert Spaces.- Appendix C Dirichlet Forms and Beurling-Deny Criteria.- Appendix D Semigroups, Resolvents and their Generators.- Appendix E Aspects of Operator Theory.- References.- Index.- Notation Index.

by "Nielsen BookData"

Related Books: 1-1 of 1

Details

  • NCID
    BC10704948
  • ISBN
    • 9783030814588
  • Country Code
    sz
  • Title Language Code
    eng
  • Text Language Code
    eng
  • Place of Publication
    Cham
  • Pages/Volumes
    xv, 668 p.
  • Size
    25 cm
  • Subject Headings
  • Parent Bibliography ID
Page Top