Variations on a theme of Borel : an essay on the role of the fundamental group in rigidity
Author(s)
Bibliographic Information
Variations on a theme of Borel : an essay on the role of the fundamental group in rigidity
(Cambridge tracts in mathematics, 213)
Cambridge University Press, 2023
- : hbk
Available at 19 libraries
  Aomori
  Iwate
  Miyagi
  Akita
  Yamagata
  Fukushima
  Ibaraki
  Tochigi
  Gunma
  Saitama
  Chiba
  Tokyo
  Kanagawa
  Niigata
  Toyama
  Ishikawa
  Fukui
  Yamanashi
  Nagano
  Gifu
  Shizuoka
  Aichi
  Mie
  Shiga
  Kyoto
  Osaka
  Hyogo
  Nara
  Wakayama
  Tottori
  Shimane
  Okayama
  Hiroshima
  Yamaguchi
  Tokushima
  Kagawa
  Ehime
  Kochi
  Fukuoka
  Saga
  Nagasaki
  Kumamoto
  Oita
  Miyazaki
  Kagoshima
  Okinawa
  Korea
  China
  Thailand
  United Kingdom
  Germany
  Switzerland
  France
  Belgium
  Netherlands
  Sweden
  Norway
  United States of America
-
Library, Research Institute for Mathematical Sciences, Kyoto University数研
: hbkWEI||39||3200043610630
Note
Includes bibliographical references (p. [311]-339) and indexes
Description and Table of Contents
Description
In the middle of the last century, after hearing a talk of Mostow on one of his rigidity theorems, Borel conjectured in a letter to Serre a purely topological version of rigidity for aspherical manifolds (i.e. manifolds with contractible universal covers). The Borel conjecture is now one of the central problems of topology with many implications for manifolds that need not be aspherical. Since then, the theory of rigidity has vastly expanded in both precision and scope. This book rethinks the implications of accepting his heuristic as a source of ideas. Doing so leads to many variants of the original conjecture - some true, some false, and some that remain conjectural. The author explores this collection of ideas, following them where they lead whether into rigidity theory in its differential geometric and representation theoretic forms, or geometric group theory, metric geometry, global analysis, algebraic geometry, K-theory, or controlled topology.
Table of Contents
- 1. Introduction
- 2. Examples of aspherical manifolds
- 3. First contact - The proper category
- 4. How can it be true?
- 5. Playing the Novikov game
- 6. Equivariant Borel conjecture
- 7. Existential problems
- 8. Epilogue - A survey of some techniques
- References
- Index.
by "Nielsen BookData"