Cubic forms and the circle method

書誌事項

Cubic forms and the circle method

Tim Browning

(Progress in mathematics, v. 343)

Birkhäuser, 2021

  • : hbk

大学図書館所蔵 件 / 18

この図書・雑誌をさがす

注記

"fFSB, fundació Ferran Sunyer i Balaguer"--Cover

Includes bibliographical references (p. 159-163) and index

内容説明・目次

内容説明

The Hardy-Littlewood circle method was invented over a century ago to study integer solutions to special Diophantine equations, but it has since proven to be one of the most successful all-purpose tools available to number theorists. Not only is it capable of handling remarkably general systems of polynomial equations defined over arbitrary global fields, but it can also shed light on the space of rational curves that lie on algebraic varieties. This book, in which the arithmetic of cubic polynomials takes centre stage, is aimed at bringing beginning graduate students into contact with some of the many facets of the circle method, both classical and modern. This monograph is the winner of the 2021 Ferran Sunyer i Balaguer Prize, a prestigious award for books of expository nature presenting the latest developments in an active area of research in mathematics.

目次

- 1. Cubic Forms Over Local Fields. - 2. Waring's Problem for Cubes. - 3. Cubic Forms via Weyl Differencing. - 4. Norm Forms Over Number Fields. - 5. Diagonal Cubic Forms Over Function Fields. - 6. Lines on Cubic Hypersurfaces.

「Nielsen BookData」 より

関連文献: 1件中  1-1を表示

詳細情報

  • NII書誌ID(NCID)
    BC11332598
  • ISBN
    • 9783030868710
  • 出版国コード
    sz
  • タイトル言語コード
    eng
  • 本文言語コード
    eng
  • 出版地
    Cham
  • ページ数/冊数
    xiv, 166 p.
  • 大きさ
    25 cm
  • 親書誌ID
ページトップへ