p-adic analysis, arithmetic and singularities : UIMP-RSME Lluís A. Santaló Summer School, p-Adic Analysis, Arithmetic and Singularities, June 24-28, 2019, Universidad Internacional Menéndez Pelayo, Santander, Spain
著者
書誌事項
p-adic analysis, arithmetic and singularities : UIMP-RSME Lluís A. Santaló Summer School, p-Adic Analysis, Arithmetic and Singularities, June 24-28, 2019, Universidad Internacional Menéndez Pelayo, Santander, Spain
(Contemporary mathematics, 778)
American Mathematical Society , Real Sociedad Matemática Española, c2022
- : pbk
大学図書館所蔵 全19件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Other editors: Alejandro Melle Hernández, Julio José Moyano-Fernández, Wilson A. Zúñiga-Galindo
Includes bibliographical references
内容説明・目次
内容説明
This volume contains the proceedings of the 2019 Lluis A. Santalo Summer School on $p$-Adic Analysis, Arithmetic and Singularities, which was held from June 24-28, 2019, at the Universidad Internacional Menendez Pelayo, Santander, Spain.
The main purpose of the book is to present and analyze different incarnations of the local zeta functions and their multiple connections in mathematics and theoretical physics. Local zeta functions are ubiquitous objects in mathematics and theoretical physics. At the mathematical level, local zeta functions contain geometry and arithmetic information about the set of zeros defined by a finite number of polynomials. In terms of applications in theoretical physics, these functions play a central role in the regularization of Feynman amplitudes and Koba-Nielsen-type string amplitudes, among other applications.
This volume provides a gentle introduction to a very active area of research that lies at the intersection of number theory, $p$-adic analysis, algebraic geometry, singularity theory, and theoretical physics. Specifically, the book introduces $p$-adic analysis, the theory of zeta functions, Archimedean, $p$-adic, motivic, singularities of plane curves and their Poincare series, among other similar topics. It also contains original contributions in the aforementioned areas written by renowned specialists.
This book is an important reference for students and experts who want to delve quickly into the area of local zeta functions and their many connections in mathematics and theoretical physics.
This book is published in cooperation with Real Sociedad Matematica Espanola.
目次
Surveys: E. Leon-Cardenal, Archimedean zeta functions and oscillatory integrals
J. J. Moyano-Fernandez, Generalized Poincare series for plane curve singularities
N. Potemans and W. Veys, Introduction to $p$-adic Igusa zeta functions
J. Viu-Sos, An introduction to $p$-adic and motivic integration, zeta functions and invariants of singularities
W. A. Zuniga-Galindo, $p$-adic analysis: A quick introduction
Articles: E. Artal Bartolo and M. Gonzalez Villa, On maximal order poles of generalized topological zeta functions
J. I. Cogolludo-Agustin, T. Laszlo, J. Martin-Morales, and A. Nemethi, Local invariants of minimal generic curves on rational surfaces
J. Nagy and A. Nemethi, Motivic Poincare series of cusp surface singularities
C. D. Sinclair, Non-Archimedean electrostatics
「Nielsen BookData」 より