Real homotopy of configuration spaces : Peccot Lecture, Collège de France, March & May 2020
著者
書誌事項
Real homotopy of configuration spaces : Peccot Lecture, Collège de France, March & May 2020
(Lecture notes in mathematics, v. 2303)
Springer, 2022
- : pbk
大学図書館所蔵 件 / 全28件
-
該当する所蔵館はありません
- すべての絞り込み条件を解除する
注記
Includes bibliographical references (p. 173-182) and index
内容説明・目次
内容説明
This volume provides a unified and accessible account of recent developments regarding the real homotopy type of configuration spaces of manifolds. Configuration spaces consist of collections of pairwise distinct points in a given manifold, the study of which is a classical topic in algebraic topology. One of this theory's most important questions concerns homotopy invariance: if a manifold can be continuously deformed into another one, then can the configuration spaces of the first manifold be continuously deformed into the configuration spaces of the second? This conjecture remains open for simply connected closed manifolds. Here, it is proved in characteristic zero (i.e. restricted to algebrotopological invariants with real coefficients), using ideas from the theory of operads. A generalization to manifolds with boundary is then considered. Based on the work of Campos, Ducoulombier, Lambrechts, Willwacher, and the author, the book covers a vast array of topics, including rational homotopy theory, compactifications, PA forms, propagators, Kontsevich integrals, and graph complexes, and will be of interest to a wide audience.
目次
- 1. Overview of the Volume. - 2. Configuration Spaces of Manifolds. - 3. Configuration Spaces of Closed Manifolds. - 4. Configuration Spaces of Manifolds with Boundary. - 5. Configuration Spaces and Operads.
「Nielsen BookData」 より