Bibliographic Information

正多胞体 : 高次元正多面体原論

H.S.M.コクセター著 ; 岡田好一, 日野雅之, 宮崎興二訳

(シュプリンガー数学クラシックス, 第31巻)

丸善出版, 2022.7

Other Title

Regular polytopes

Title Transcription

セイタホウタイ : コウジゲン セイタメンタイ ゲンロン

Access to Electronic Resource 1 items

Available at  / 66 libraries

Note

監訳: 一松信

本書はH.S.M.Coxeter"Regular Polytopes"第3版 (Dover,1973) の全訳書

参考文献: p[305]-315

Description and Table of Contents

Description

多面体宇宙論などに多大な影響を与えるなど、科学界では高次元のかたちへの関心が非常に高まっている。その概念を理解するうえで不可欠な基礎知識が「高次元幾何学」である。本書ではその中心テーマである高次元正多面体つまり正多胞体の幾何学について、古典的入門的な話題から現代的な新理論までを、2次元の多角形や3次元の多面体の話題も交えて幅広く詳細にまとめる。線形代数・解析幾何・射影幾何を駆使しながら数学的厳密さを追求するとともに、諸科学への応用が可能な重要ポイントについては図を用いて簡潔にまとめられているため、周辺分野の研究者にとっても大変役立つ内容になっている。幾何学を救った幾何学者コクセターの代表作の初邦訳。

Table of Contents

  • 多角形と多面体
  • 正多面体と準正多面体
  • 回転群
  • タイル貼りとブロック積み
  • 万華鏡
  • 星形多面体
  • 高次元の正多胞体
  • 切頂
  • ポアンカレによるオイラーの多面体公式の証明
  • 形式、ベクトル、座標
  • 万華鏡の一般化

by "BOOK database"

Related Books: 1-1 of 1

Details

  • NCID
    BC1606450X
  • ISBN
    • 9784621307267
  • Country Code
    ja
  • Title Language Code
    jpn
  • Text Language Code
    jpn
  • Original Language Code
    eng
  • Place of Publication
    東京
  • Pages/Volumes
    xii, 331p
  • Size
    22cm
  • Classification
  • Subject Headings
  • Parent Bibliography ID
Page Top