Wave packet analysis of Feynman path integrals
著者
書誌事項
Wave packet analysis of Feynman path integrals
(Lecture notes in mathematics, 2305)
Springer, 2022
- : pbk
大学図書館所蔵 件 / 全27件
-
該当する所蔵館はありません
- すべての絞り込み条件を解除する
注記
Includes bibliographical references (p. 199-208) and index
内容説明・目次
内容説明
The purpose of this monograph is to offer an accessible and essentially self-contained presentation of some mathematical aspects of the Feynman path integral in non-relativistic quantum mechanics. In spite of the primary role in the advancement of modern theoretical physics and the wide range of applications, path integrals are still a source of challenging problem for mathematicians. From this viewpoint, path integrals can be roughly described in terms of approximation formulas for an operator (usually the propagator of a Schroedinger-type evolution equation) involving a suitably designed sequence of operators.
In keeping with the spirit of harmonic analysis, the guiding theme of the book is to illustrate how the powerful techniques of time-frequency analysis - based on the decomposition of functions and operators in terms of the so-called Gabor wave packets - can be successfully applied to mathematical path integrals, leading to remarkable results and paving the way to a fruitful interaction.
This monograph intends to build a bridge between the communities of people working in time-frequency analysis and mathematical/theoretical physics, and to provide an exposition of the present novel approach along with its basic toolkit. Having in mind a researcher or a Ph.D. student as reader, we collected in Part I the necessary background, in the most suitable form for our purposes, following a smooth pedagogical pattern. Then Part II covers the analysis of path integrals, reflecting the topics addressed in the research activity of the authors in the last years.
目次
- Itinerary - How Gabor Analysis met Feynman Path Integrals.
- Part I Elements of Gabor Analysis.
- Basic Facts of Classical Analysis. - The Gabor Analysis of Functions. - The Gabor Analysis of Operators. - Semiclassical Gabor Analysis.
- Part II Analysis of Feynman Path Integrals.
- Pointwise Convergence of the Integral Kernels. - Convergence in L(L2) - Potentials in the Sjoestrand Class. - Convergence in L(L2) - Potentials in Kato-Sobolev Spaces. - Convergence in the Lp Setting.
「Nielsen BookData」 より