Elliptic regularity theory by approximation methods

著者

    • Pimentel, Edgard A.

書誌事項

Elliptic regularity theory by approximation methods

Edgard A. Pimentel

(London Mathematical Society lecture note series, 477)

Cambridge University Press, 2022

  • : pbk

大学図書館所蔵 件 / 31

この図書・雑誌をさがす

注記

Includes bibliographical references (p. 181-188) and index

内容説明・目次

内容説明

Presenting the basics of elliptic PDEs in connection with regularity theory, the book bridges fundamental breakthroughs - such as the Krylov-Safonov and Evans-Krylov results, Caffarelli's regularity theory, and the counterexamples due to Nadirashvili and Vladut - and modern developments, including improved regularity for flat solutions and the partial regularity result. After presenting this general panorama, accounting for the subtleties surrounding C-viscosity and Lp-viscosity solutions, the book examines important models through approximation methods. The analysis continues with the asymptotic approach, based on the recession operator. After that, approximation techniques produce a regularity theory for the Isaacs equation, in Sobolev and Hoelder spaces. Although the Isaacs operator lacks convexity, approximation methods are capable of producing Hoelder continuity for the Hessian of the solutions by connecting the problem with a Bellman equation. To complete the book, degenerate models are studied and their optimal regularity is described.

目次

  • Preface
  • 1. Elliptic partial differential equations
  • 2. Flat solutions are regular
  • 3. The recession strategy
  • 4. A regularity theory for the Isaacs equation
  • 5. Regularity theory for degenerate models
  • References
  • Index.

「Nielsen BookData」 より

関連文献: 1件中  1-1を表示

詳細情報

  • NII書誌ID(NCID)
    BC16999822
  • ISBN
    • 9781009096669
  • 出版国コード
    uk
  • タイトル言語コード
    eng
  • 本文言語コード
    eng
  • 出版地
    Cambridge
  • ページ数/冊数
    xi, 190 p.
  • 大きさ
    23 cm
  • 分類
  • 件名
  • 親書誌ID
ページトップへ