Algebraic geometry : notes on a course

書誌事項

Algebraic geometry : notes on a course

Michael Artin

(Graduate studies in mathematics, 222)

American Mathematical Society, c2022

  • : hardcover

大学図書館所蔵 件 / 19

この図書・雑誌をさがす

注記

Includes bibliographical references (p. 313-314) and index

内容説明・目次

内容説明

This book is an introduction to the geometry of complex algebraic varieties. It is intended for students who have learned algebra, analysis, and topology, as taught in standard undergraduate courses. So it is a suitable text for a beginning graduate course or an advanced undergraduate course. The book begins with a study of plane algebraic curves, then introduces affine and projective varieties, going on to dimension and construcibility. $\mathcal{O}$-modules (quasicoherent sheaves) are defined without reference to sheaf theory, and their cohomology is defined axiomatically. The Riemann-Roch Theorem for curves is proved using projection to the projective line. Some of the points that aren't always treated in beginning courses are Hensel's Lemma, Chevalley's Finiteness Theorem, and the Birkhoff-Grothendieck Theorem. The book contains extensive discussions of finite group actions, lines in $\mathbb{P}^3$, and double planes, and it ends with applications of the Riemann-Roch Theorem.

目次

Plane curves Affine algebraic geometry Projective algebraic geometry Integral morphisms Structure of varieties in the Zariski topology Modules Cohomology The Riemann-Roch Theorem for curves Background Glossary Index of notation Bibliography Index

「Nielsen BookData」 より

関連文献: 1件中  1-1を表示

詳細情報

  • NII書誌ID(NCID)
    BC17004773
  • ISBN
    • 9781470468484
  • LCCN
    2022012175
  • 出版国コード
    us
  • タイトル言語コード
    eng
  • 本文言語コード
    eng
  • 出版地
    Providence, R.I.
  • ページ数/冊数
    x, 318 p.
  • 大きさ
    27 cm
  • 分類
  • 件名
  • 親書誌ID
ページトップへ