Concentration and Gaussian approximation for randomized sums
Author(s)
Bibliographic Information
Concentration and Gaussian approximation for randomized sums
(Probability theory and stochastic modelling, 104)
Springer, 2023
Available at 13 libraries
  Aomori
  Iwate
  Miyagi
  Akita
  Yamagata
  Fukushima
  Ibaraki
  Tochigi
  Gunma
  Saitama
  Chiba
  Tokyo
  Kanagawa
  Niigata
  Toyama
  Ishikawa
  Fukui
  Yamanashi
  Nagano
  Gifu
  Shizuoka
  Aichi
  Mie
  Shiga
  Kyoto
  Osaka
  Hyogo
  Nara
  Wakayama
  Tottori
  Shimane
  Okayama
  Hiroshima
  Yamaguchi
  Tokushima
  Kagawa
  Ehime
  Kochi
  Fukuoka
  Saga
  Nagasaki
  Kumamoto
  Oita
  Miyazaki
  Kagoshima
  Okinawa
  Korea
  China
  Thailand
  United Kingdom
  Germany
  Switzerland
  France
  Belgium
  Netherlands
  Sweden
  Norway
  United States of America
-
Library, Research Institute for Mathematical Sciences, Kyoto University数研
BOB||6||1200045064455
Note
Includes bibliographical references and index
Description and Table of Contents
Description
This book describes extensions of Sudakov's classical result on the concentration of measure phenomenon for weighted sums of dependent random variables. The central topics of the book are weighted sums of random variables and the concentration of their distributions around Gaussian laws. The analysis takes place within the broader context of concentration of measure for functions on high-dimensional spheres. Starting from the usual concentration of Lipschitz functions around their limiting mean, the authors proceed to derive concentration around limiting affine or polynomial functions, aiming towards a theory of higher order concentration based on functional inequalities of log-Sobolev and Poincare type. These results make it possible to derive concentration of higher order for weighted sums of classes of dependent variables.
While the first part of the book discusses the basic notions and results from probability and analysis which are needed for the remainder of the book, the latter parts provide a thorough exposition of concentration, analysis on the sphere, higher order normal approximation and classes of weighted sums of dependent random variables with and without symmetries.
Table of Contents
Part I. Generalities.- 1. Moments and correlation conditions.- 2. Some classes of probability distributions.- 3. Characteristic functions.- 4. Sums of independent random variables.- Part II. Selected topics on concentration.- 5. Standard analytic conditions.- 6. Poincare-type inequalities.- 7. Logarithmic Sobolev inequalities.- 8. Supremum and infimum convolutions.- Part IV. Analysis on the sphere.- 9. Sobolev-type inequalities.- 10. Second order spherical concentration.- 11. Linear functionals on the sphere.- Part V. First applications to randomized sums.- 12. Typical distributions.- 13. Characteristic functions of weighted sums.- 14. Fluctuations of distributions.- Part VI. Refined bounds and rates.- 15. L^2 expansions and estimates.- 16. Refinements for the Kolmogorov distance.- 17. Applications of the second order correlation condition.- Part VII. Distributions and coefficients of special types.- 18. Special systems and examples.- 19. Distributions with symmetries.- 20. Product measures.- 21. Coefficients of Special type.- Glossary.
by "Nielsen BookData"