Univalent functions and Teichmüller spaces
著者
書誌事項
Univalent functions and Teichmüller spaces
(Graduate texts in mathematics, 109)
Springer-Verlag, c1987
- : us
- : gw
- : softcover
並立書誌 全1件
大学図書館所蔵 件 / 全115件
-
: U.S410.8/G701/1090086251022,
: Germany410.8/G701/1090086251022, 410.8/G701/1090086259675 -
該当する所蔵館はありません
- すべての絞り込み条件を解除する
注記
"Softcover reprint of the hardcover 1st edition 1987"--T.p. verso
Bibliography: p. [248]-252
Includes index
内容説明・目次
- 巻冊次
-
: us ISBN 9780387963105
目次
I Quasiconformal Mappings.- to Chapter I.- 1. Conformal Invariants.- 1.1 Hyperbolic metric.- 1.2 Module of a quadrilateral.- 1.3 Length-area method.- 1.4 Rengel's inequality.- 1.5 Module of a ring domain.- 1.6 Module of a path family.- 2. Geometric Definition of Quasiconformal Mappings.- 2.1 Definitions of quasiconformality.- 2.2 Normal families of quasiconformal mappings.- 2.3 Compactness of quasiconformal mappings.- 2.4 A distortion function.- 2.5 Circular distortion.- 3. Analytic Definition of Quasiconformal Mappings.- 3.1 Dilatation quotient.- 3.2 Quasiconformal diffeomorphisms.- 3.3 Absolute continuity and differentiability.- 3.4 Generalized derivatives.- 3.5 Analytic characterization of quasiconformality.- 4. Beltrami Differential Equation.- 4.1 Complex dilatation.- 4.2 Quasiconformal mappings and the Beltrami equation.- 4.3 Singular integrals.- 4.4 Representation of quasiconformal mappings.- 4.5 Existence theorem.- 4.6 Convergence of complex dilatations.- 4.7 Decomposition of quasiconformal mappings.- 5. The Boundary Value Problem.- 5.1 Boundary function of a quasiconformal mapping.- 5.2 Quasisymmetric functions.- 5.3 Solution of the boundary value problem.- 5.4 Composition of Beurling-Ahlfors extensions.- 5.5 Quasi-isometry.- 5.6 Smoothness of solutions.- 5.7 Extremal solutions.- 6. Quasidiscs.- 6.1 Quasicircles.- 6.2 Quasiconformal reflections.- 6.3 Uniform domains.- 6.4 Linear local connectivity.- 6.5 Arc condition.- 6.6 Conjugate quadrilaterals.- 6.7 Characterizations of quasidiscs.- II Univalent Functions.- to Chapter II.- 1. Schwarzian Derivative.- 1.1 Definition and transformation rules.- 1.2 Existence and uniqueness.- 1.3 Norm of the Schwarzian derivative.- 1.4 Convergence of Schwarzian derivatives.- 1.5 Area theorem.- 1.6 Conformal mappings of a disc.- 2. Distance between Simply Connected Domains.- 2.1 Distance from a disc.- 2.2 Distance function and coefficient problems.- 2.3 Boundary rotation.- 2.4 Domains of bounded boundary rotation.- 2.5 Upper estimate for the Schwarzian derivative.- 2.6 Outer radius of univalence.- 2.7 Distance between arbitrary domains.- 3. Conformal Mappings with Quasiconformal Extensions.- 3.1 Deviation from Mobius transformations.- 3.2 Dependence of a mapping on its complex dilatation.- 3.3 Schwarzian derivatives and complex dilatations.- 3.4 Asymptotic estimates.- 3.5 Majorant principle.- 3.6 Coefficient estimates.- 4. Univalence and Quasiconformal Extensibility of Meromorphic Functions.- 4.1 Quasiconformal reflections under Mobius transformations.- 4.2 Quasiconformal extension of Conformal mappings.- 4.3 Exhaustion by quasidiscs.- 4.4 Definition of Schwarzian domains.- 4.5 Domains not linearly locally connected.- 4.6 Schwarzian domains and quasidiscs.- 5. Functions Univalent in a Disc.- 5.1 Quasiconformal extension to the complement of a disc.- 5.2 Real analytic solutions of the boundary value problem.- 5.3 Criterion for univalence.- 5.4 Parallel strips.- 5.5 Continuous extension.- 5.6 Image of discs.- 5.7 Homeomorphic extension.- III Universal Teichmuller Space.- to Chapter III.- 1. Models of the Universal Teichmuller Space.- 1.1 Equivalent quasiconformal mappings.- 1.2 Group structures.- 1.3 Normalized Conformal mappings.- 1.4 Sewing problem.- 1.5 Normalized quasidiscs.- 2. Metric of the Universal Teichmuller Space.- 2.1 Definition of the Teichmuller distance.- 2.2 Teichmuller distance and complex dilatation.- 2.3 Geodesics for the Teichmuller metric.- 2.4 Completeness of the universal Teichmuller space.- 3. Space of Quasisymmetric Functions.- 3.1 Distance between quasisymmetric functions.- 3.2 Existence of a section.- 3.3 Contractibility of the universal Teichmuller space.- 3.4 Incompatibility of the group structure with the metric.- 4. Space of Schwarzian Derivatives.- 4.1 Mapping into the space of Schwarzian derivatives.- 4.2 Comparison of distances.- 4.3 Imbedding of the universal Teichmuller space.- 4.4 Schwarzian derivatives of univalent functions.- 4.5 Univalent functions and the universal Teichmuller space.- 4.6 Closure of the universal Teichmuller space.- 5. Inner Radius of Univalence.- 5.1 Definition of the inner radius of univalence.- 5.2 Isomorphic Teichmuller spaces.- 5.3 Inner radius and quasiconformal extensions.- 5.4 Inner radius and quasiconformal reflections.- 5.5 Inner radius of sectors.- 5.6 Inner radius of ellipses and polygons.- 5.7 General estimates for the inner radius.- IV Riemann Surfaces.- to Chapter IV.- 1. Manifolds and Their Structures.- 1.1 Real manifolds.- 1.2 Complex analytic manifolds.- 1.3 Border of a surface.- 1.4 Differentials on Riemann surfaces.- 1.5 Isothermal coordinates.- 1.6 Riemann surfaces and quasiconformal mappings.- 2. Topology of Covering Surfaces.- 2.1 Lifting of paths.- 2.2 Covering surfaces and the fundamental group.- 2.3 Branched covering surfaces.- 2.4 Covering groups.- 2.5 Properly discontinuous groups.- 3. Uniformization of Riemann Surfaces.- 3.1 Lifted and projected Conformal structures.- 3.2 Riemann mapping theorem.- 3.3 Representation of Riemann surfaces.- 3.4 Lifting of continuous mappings.- 3.5 Homotopic mappings.- 3.6 Lifting of differentials.- 4. Groups of Mobius Transformations.- 4.1 Covering groups acting on the plane.- 4.2 Fuchsian groups.- 4.3 Elementary groups.- 4.4 Kleinian groups.- 4.5 Structure of the limit set.- 4.6 Invariant domains.- 5. Compact Riemann Surfaces.- 5.1 Covering groups over compact surfaces.- 5.2 Genus of a compact surface.- 5.3 Function theory on compact Riemann surfaces.- 5.4 Divisors on compact surfaces.- 5.5 Riemann-Roch theorem.- 6. Trajectories of Quadratic Differentials.- 6.1 Natural parameters.- 6.2 Straight lines and trajectories.- 6.3 Orientation of trajectories.- 6.4 Trajectories in the large.- 6.5 Periodic trajectories.- 6.6 Non-periodic trajectories.- 7. Geodesics of Quadratic Differentials.- 7.1 Definition of the induced metric.- 7.2 Locally shortest curves.- 7.3 Geodesic polygons.- 7.4 Minimum property of geodesics.- 7.5 Existence of geodesies.- 7.6 Deformation of horizontal arcs.- V Teichmuller Spaces.- to Chapter V.- 1. Quasiconformal Mappings of Riemann Surfaces.- 1.1 Complex dilatation on Riemann surfaces.- 1.2 Conformal structures.- 1.3 Group isomorphisms induced by quasiconformal mappings.- 1.4 Homotopy modulo the boundary.- 1.5 Quasiconformal mappings in homotopy classes.- 2. Definitions of Teichmuller Space.- 2.1 Riemann space and Teichmuller space.- 2.2 Teichmuller metric.- 2.3 Teichmuller space and Beltrami differentials.- 2.4 Teichmuller space and Conformal structures.- 2.5 Conformal structures on a compact surface.- 2.6 Isomorphisms of Teichmuller spaces.- 2.7 Modular group.- 3. Teichmuller Space and Lifted Mappings.- 3.1 Equivalent Beltrami differentials.- 3.2 Teichmuller space as a subset of the universal space.- 3.3 Completeness of Teichmuller spaces.- 3.4 Quasi-Fuchsian groups.- 3.5 Quasiconformal reflections compatible with a group.- 3.6 Quasisymmetric functions compatible with a group.- 3.7 Unique extremality and Teichmuller metrics.- 4. Teichmuller Space and Schwarzian Derivatives.- 4.1 Schwarzian derivatives and quadratic differentials.- 4.2 Spaces of quadratic differentials.- 4.3 Schwarzian derivatives of univalent functions.- 4.4 Connection between Teichmuller spaces and the universal space.- 4.5 Distance to the boundary.- 4.6 Equivalence of metrics.- 4.7 Bers imbedding.- 4.8 Quasiconformal extensions compatible with a group.- 5. Complex Structures on Teichmuller Spaces.- 5.1 Holomorphic functions in Banach spaces.- 5.2 Banach manifolds.- 5.3 A holomorphic mapping between Banach spaces.- 5.4 An atlas on the Teichmuller space.- 5.5 Complex analytic structure.- 5.6 Complex structure under quasiconformal mappings.- 6. Teichmuller Space of a Torus.- 6.1 Covering group of a torus.- 6.2 Generation of group isomorphisms.- 6.3 Conformal equivalence of tori.- 6.4 Extremal mappings of tori.- 6.5 Distance of group isomorphisms from the identity.- 6.6 Representation of the Teichmuller space of a torus.- 6.7 Complex structure of the Teichmuller space of torus.- 7. Extremal Mappings of Riemann Surfaces.- 7.1 Dual Banach spaces.- 7.2 Space of integrable holomorphic quadratic differentials.- 7.3 Poincare theta series.- 7.4 Infinitesimally trivial differentials.- 7.5 Mappings with infinitesimally trivial dilatations.- 7.6 Complex dilatations of extremal mappings.- 7.7 Teichmuller mappings.- 7.8 Extremal mappings of compact surfaces.- 8. Uniqueness of Extremal Mappings of Compact Surfaces.- 8.1 Teichmuller mappings and quadratic differentials.- 8.2 Local representation of Teichmuller mappings.- 8.3 Stretching function and the Jacobian.- 8.4 Average stretching.- 8.5 Teichmuller's uniqueness theorem.- 9. Teichmuller Spaces of Compact Surfaces.- 9.1 Teichmuller imbedding.- 9.2 Teichmuller space as a ball of the euclidean space.- 9.3 Straight lines in Teichmuller space.- 9.4 Composition of Teichmuller mappings.- 9.5 Teichmuller discs.- 9.6 Complex structure and Teichmuller metric.- 9.7 Surfaces of finite type.
- 巻冊次
-
: softcover ISBN 9781461386544
内容説明
This monograph grew out of the notes relating to the lecture courses that I gave at the University of Helsinki from 1977 to 1979, at the Eidgenossische Technische Hochschule Zurich in 1980, and at the University of Minnesota in 1982. The book presumably would never have been written without Fred Gehring's continuous encouragement. Thanks to the arrangements made by Edgar Reich and David Storvick, I was able to spend the fall term of 1982 in Minneapolis and do a good part of the writing there. Back in Finland, other commitments delayed the completion of the text. At the final stages of preparing the manuscript, I was assisted first by Mika Seppala and then by Jouni Luukkainen, who both had a grant from the Academy of Finland. I am greatly indebted to them for the improvements they made in the text. I also received valuable advice and criticism from Kari Astala, Richard Fehlmann, Barbara Flinn, Fred Gehring, Pentti Jarvi, Irwin Kra, Matti Lehtinen, I1ppo Louhivaara, Bruce Palka, Kurt Strebel, Kalevi Suominen, Pekka Tukia and Kalle Virtanen. To all of them I would like to express my gratitude.
Raili Pauninsalo deserves special thanks for her patience and great care in typing the manuscript. Finally, I thank the editors for accepting my text in Springer-Verlag's well- known series. Helsinki, Finland June 1986 Olli Lehto Contents Preface...v Introduction ...
目次
I Quasiconformal Mappings.- to Chapter I.- 1. Conformal Invariants.- 1.1 Hyperbolic metric.- 1.2 Module of a quadrilateral.- 1.3 Length-area method.- 1.4 Rengel's inequality.- 1.5 Module of a ring domain.- 1.6 Module of a path family.- 2. Geometric Definition of Quasiconformal Mappings.- 2.1 Definitions of quasiconformality.- 2.2 Normal families of quasiconformal mappings.- 2.3 Compactness of quasiconformal mappings.- 2.4 A distortion function.- 2.5 Circular distortion.- 3. Analytic Definition of Quasiconformal Mappings.- 3.1 Dilatation quotient.- 3.2 Quasiconformal diffeomorphisms.- 3.3 Absolute continuity and differentiability.- 3.4 Generalized derivatives.- 3.5 Analytic characterization of quasiconformality.- 4. Beltrami Differential Equation.- 4.1 Complex dilatation.- 4.2 Quasiconformal mappings and the Beltrami equation.- 4.3 Singular integrals.- 4.4 Representation of quasiconformal mappings.- 4.5 Existence theorem.- 4.6 Convergence of complex dilatations.- 4.7 Decomposition of quasiconformal mappings.- 5. The Boundary Value Problem.- 5.1 Boundary function of a quasiconformal mapping.- 5.2 Quasisymmetric functions.- 5.3 Solution of the boundary value problem.- 5.4 Composition of Beurling-Ahlfors extensions.- 5.5 Quasi-isometry.- 5.6 Smoothness of solutions.- 5.7 Extremal solutions.- 6. Quasidiscs.- 6.1 Quasicircles.- 6.2 Quasiconformal reflections.- 6.3 Uniform domains.- 6.4 Linear local connectivity.- 6.5 Arc condition.- 6.6 Conjugate quadrilaterals.- 6.7 Characterizations of quasidiscs.- II Univalent Functions.- to Chapter II.- 1. Schwarzian Derivative.- 1.1 Definition and transformation rules.- 1.2 Existence and uniqueness.- 1.3 Norm of the Schwarzian derivative.- 1.4 Convergence of Schwarzian derivatives.- 1.5 Area theorem.- 1.6 Conformal mappings of a disc.- 2. Distance between Simply Connected Domains.- 2.1 Distance from a disc.- 2.2 Distance function and coefficient problems.- 2.3 Boundary rotation.- 2.4 Domains of bounded boundary rotation.- 2.5 Upper estimate for the Schwarzian derivative.- 2.6 Outer radius of univalence.- 2.7 Distance between arbitrary domains.- 3. Conformal Mappings with Quasiconformal Extensions.- 3.1 Deviation from Moebius transformations.- 3.2 Dependence of a mapping on its complex dilatation.- 3.3 Schwarzian derivatives and complex dilatations.- 3.4 Asymptotic estimates.- 3.5 Majorant principle.- 3.6 Coefficient estimates.- 4. Univalence and Quasiconformal Extensibility of Meromorphic Functions.- 4.1 Quasiconformal reflections under Moebius transformations.- 4.2 Quasiconformal extension of Conformal mappings.- 4.3 Exhaustion by quasidiscs.- 4.4 Definition of Schwarzian domains.- 4.5 Domains not linearly locally connected.- 4.6 Schwarzian domains and quasidiscs.- 5. Functions Univalent in a Disc.- 5.1 Quasiconformal extension to the complement of a disc.- 5.2 Real analytic solutions of the boundary value problem.- 5.3 Criterion for univalence.- 5.4 Parallel strips.- 5.5 Continuous extension.- 5.6 Image of discs.- 5.7 Homeomorphic extension.- III Universal Teichmuller Space.- to Chapter III.- 1. Models of the Universal Teichmuller Space.- 1.1 Equivalent quasiconformal mappings.- 1.2 Group structures.- 1.3 Normalized Conformal mappings.- 1.4 Sewing problem.- 1.5 Normalized quasidiscs.- 2. Metric of the Universal Teichmuller Space.- 2.1 Definition of the Teichmuller distance.- 2.2 Teichmuller distance and complex dilatation.- 2.3 Geodesics for the Teichmuller metric.- 2.4 Completeness of the universal Teichmuller space.- 3. Space of Quasisymmetric Functions.- 3.1 Distance between quasisymmetric functions.- 3.2 Existence of a section.- 3.3 Contractibility of the universal Teichmuller space.- 3.4 Incompatibility of the group structure with the metric.- 4. Space of Schwarzian Derivatives.- 4.1 Mapping into the space of Schwarzian derivatives.- 4.2 Comparison of distances.- 4.3 Imbedding of the universal Teichmuller space.- 4.4 Schwarzian derivatives of univalent functions.- 4.5 Univalent functions and the universal Teichmuller space.- 4.6 Closure of the universal Teichmuller space.- 5. Inner Radius of Univalence.- 5.1 Definition of the inner radius of univalence.- 5.2 Isomorphic Teichmuller spaces.- 5.3 Inner radius and quasiconformal extensions.- 5.4 Inner radius and quasiconformal reflections.- 5.5 Inner radius of sectors.- 5.6 Inner radius of ellipses and polygons.- 5.7 General estimates for the inner radius.- IV Riemann Surfaces.- to Chapter IV.- 1. Manifolds and Their Structures.- 1.1 Real manifolds.- 1.2 Complex analytic manifolds.- 1.3 Border of a surface.- 1.4 Differentials on Riemann surfaces.- 1.5 Isothermal coordinates.- 1.6 Riemann surfaces and quasiconformal mappings.- 2. Topology of Covering Surfaces.- 2.1 Lifting of paths.- 2.2 Covering surfaces and the fundamental group.- 2.3 Branched covering surfaces.- 2.4 Covering groups.- 2.5 Properly discontinuous groups.- 3. Uniformization of Riemann Surfaces.- 3.1 Lifted and projected Conformal structures.- 3.2 Riemann mapping theorem.- 3.3 Representation of Riemann surfaces.- 3.4 Lifting of continuous mappings.- 3.5 Homotopic mappings.- 3.6 Lifting of differentials.- 4. Groups of Moebius Transformations.- 4.1 Covering groups acting on the plane.- 4.2 Fuchsian groups.- 4.3 Elementary groups.- 4.4 Kleinian groups.- 4.5 Structure of the limit set.- 4.6 Invariant domains.- 5. Compact Riemann Surfaces.- 5.1 Covering groups over compact surfaces.- 5.2 Genus of a compact surface.- 5.3 Function theory on compact Riemann surfaces.- 5.4 Divisors on compact surfaces.- 5.5 Riemann-Roch theorem.- 6. Trajectories of Quadratic Differentials.- 6.1 Natural parameters.- 6.2 Straight lines and trajectories.- 6.3 Orientation of trajectories.- 6.4 Trajectories in the large.- 6.5 Periodic trajectories.- 6.6 Non-periodic trajectories.- 7. Geodesics of Quadratic Differentials.- 7.1 Definition of the induced metric.- 7.2 Locally shortest curves.- 7.3 Geodesic polygons.- 7.4 Minimum property of geodesics.- 7.5 Existence of geodesies.- 7.6 Deformation of horizontal arcs.- V Teichmuller Spaces.- to Chapter V.- 1. Quasiconformal Mappings of Riemann Surfaces.- 1.1 Complex dilatation on Riemann surfaces.- 1.2 Conformal structures.- 1.3 Group isomorphisms induced by quasiconformal mappings.- 1.4 Homotopy modulo the boundary.- 1.5 Quasiconformal mappings in homotopy classes.- 2. Definitions of Teichmuller Space.- 2.1 Riemann space and Teichmuller space.- 2.2 Teichmuller metric.- 2.3 Teichmuller space and Beltrami differentials.- 2.4 Teichmuller space and Conformal structures.- 2.5 Conformal structures on a compact surface.- 2.6 Isomorphisms of Teichmuller spaces.- 2.7 Modular group.- 3. Teichmuller Space and Lifted Mappings.- 3.1 Equivalent Beltrami differentials.- 3.2 Teichmuller space as a subset of the universal space.- 3.3 Completeness of Teichmuller spaces.- 3.4 Quasi-Fuchsian groups.- 3.5 Quasiconformal reflections compatible with a group.- 3.6 Quasisymmetric functions compatible with a group.- 3.7 Unique extremality and Teichmuller metrics.- 4. Teichmuller Space and Schwarzian Derivatives.- 4.1 Schwarzian derivatives and quadratic differentials.- 4.2 Spaces of quadratic differentials.- 4.3 Schwarzian derivatives of univalent functions.- 4.4 Connection between Teichmuller spaces and the universal space.- 4.5 Distance to the boundary.- 4.6 Equivalence of metrics.- 4.7 Bers imbedding.- 4.8 Quasiconformal extensions compatible with a group.- 5. Complex Structures on Teichmuller Spaces.- 5.1 Holomorphic functions in Banach spaces.- 5.2 Banach manifolds.- 5.3 A holomorphic mapping between Banach spaces.- 5.4 An atlas on the Teichmuller space.- 5.5 Complex analytic structure.- 5.6 Complex structure under quasiconformal mappings.- 6. Teichmuller Space of a Torus.- 6.1 Covering group of a torus.- 6.2 Generation of group isomorphisms.- 6.3 Conformal equivalence of tori.- 6.4 Extremal mappings of tori.- 6.5 Distance of group isomorphisms from the identity.- 6.6 Representation of the Teichmuller space of a torus.- 6.7 Complex structure of the Teichmuller space of torus.- 7. Extremal Mappings of Riemann Surfaces.- 7.1 Dual Banach spaces.- 7.2 Space of integrable holomorphic quadratic differentials.- 7.3 Poincare theta series.- 7.4 Infinitesimally trivial differentials.- 7.5 Mappings with infinitesimally trivial dilatations.- 7.6 Complex dilatations of extremal mappings.- 7.7 Teichmuller mappings.- 7.8 Extremal mappings of compact surfaces.- 8. Uniqueness of Extremal Mappings of Compact Surfaces.- 8.1 Teichmuller mappings and quadratic differentials.- 8.2 Local representation of Teichmuller mappings.- 8.3 Stretching function and the Jacobian.- 8.4 Average stretching.- 8.5 Teichmuller's uniqueness theorem.- 9. Teichmuller Spaces of Compact Surfaces.- 9.1 Teichmuller imbedding.- 9.2 Teichmuller space as a ball of the euclidean space.- 9.3 Straight lines in Teichmuller space.- 9.4 Composition of Teichmuller mappings.- 9.5 Teichmuller discs.- 9.6 Complex structure and Teichmuller metric.- 9.7 Surfaces of finite type.
「Nielsen BookData」 より