Non-homogeneous boundary value problems and applications
著者
書誌事項
Non-homogeneous boundary value problems and applications
(Die Grundlehren der mathematischen Wissenschaften, Bd. 181-183)
Springer-Verlag, 1972-1973
- v. 1 : gw
- v. 1 : us
- v. 1 : pbk
- v. 2 : gw
- v. 2 : us
- v. 3 : gw
- v. 3 : us
- v. 3 : pbk
- タイトル別名
-
Problèmes aux limites non homogènes et applications
大学図書館所蔵 件 / 全117件
-
v. 1 : gw413||L66||172002804,
v. 2 : gw413||L66||272004541, v. 3 : gw413||L66||373001686 -
v. 1 : gw413||L1230002412,
v. 2 : us414.9||L1230002944, v. 3 : us414.9||L1230002956 OPAC
-
v. 1 : us517.5/L/1303213032,
v. 2 : us517.5/L/1303313033, v. 3 : us517.5/L/1303413034 -
v. 1 : gw517.38||LiY8325463,
v. 2 : gw517.38||LiY8325462, v. 3 : gw517.38||LiY8325459 -
v. 1 : gw421.46//L00014402325,
v. 2 : gw421.46//L00014402333,00014377436, v. 3 : gw421.41//L00014402341 -
v. 1 : gw410.8//G00014096507,
v. 2 : gw410.8//G00014096515, v. 3 : gw410.8//G00014096523, v. 1 : pbk410.8//G89//683815100268380 -
v. 1 : gw413.6/N/110054111,
v. 2 : us413.6/N/260029692, v. 3 : gw413.6/N/310054120 -
v. 1 : gw410.8/G89s/181203513700013,
v. 2 : gw410.8/G89s/182203589300011, v. 3 : gw410.8/G89s/183203985300011 -
v. 1 : gw413.6||L-31||1-c0132597,
v. 2 : gw413.6||L-31||20132599, v. 3 : gw413.6||L-31||3-b0144159 -
v. 1410.8||G89||181072032176007307,
v. 2410.8||G89||182072032177001457, v. 3410.8||G89||183072032176007310 -
v. 1 : gw413.63||L 66||1Y8100127,
v. 2 : gw413.63||L 66||2Y8100128, v. 3 : gw413.63||L 66||3Y7301304 -
v. 1 : us410.8||G||181(G)9851504530,
v. 2 : us410.8||G||182(C)9851498544, v. 3 : us410.8||G||183(C)9851498555 -
v. 1 : gw413.65||L||100156988,
v. 2 : gw413.65||L||200163968, v. 3 : gw413.65||L||300177201 -
v. 1 : gwH||GRU||1811920329,
v. 2 : gwH||GRU||1821920335, v. 3 : gwH||GRU||18390024859 -
v. 1 : gwLIO||1||7-1(K)||複本1979432,
v. 2 : gwLIO||1||7-2(K)||複本1910728, v. 3 : gwLIO||1||7-3(K)||複本1979445 -
v. 1 : gw413.6||LIO 2||2-12001850,
v. 2 : gw413.6||LIO 2||2-22001851, v. 3 : gw413.6||LIO 2||2-32001852 -
v. 1 : gw616||||28051870473,
v. 2 : gw616||||28051894226, v. 3 : gw616||||28051974945 -
2413.65||1||288800524,
3413.65||1||388800523, 1413.65||1||188800649, 540||300001192 -
v. 1 : gw413.65:L66:1207220459,
v. 2 : gw413.65:L66:2207220460, v. 3 : gw413.65:L66:3A207222506 -
v. 1 : gw410.8/5/181a41101162,
v. 2 : gw410.8/5/182a41101170, v. 3 : gw410.8/5/183a41101189 -
v. 1 : gw413-L19//2-1100000108525,
v. 2 : gw413-L19//2-2100000108526, v. 3 : gw413-L19//2-3100000108527 -
v. 1 : gw410-8-5031020065196,
v. 2 : gw410-8-5031020065974, v. 3 : gw413-65-L//3031010020372 -
v. 1 : gw690||GRU-1||181B8500012,
v. 2 : gw690||GRU-1||182B8500013, v. 3 : gw690||GRU-1||183B8500014 OPAC
-
v. 1 : gw410.8-G 89-181127070337,
v. 2 : gw410.8-G 89-182127070338, v. 3 : gw410.8-G 89-183127039915 -
v. 1 : gw421.46/L66/11001527751,
v. 2 : gw421.46/L66/21001307501, v. 3 : gw421.46/L66/31001383163 -
v. 1 : gw410.8/69/1818100369316,
v. 2 : gw421.46/L66/21001262458, v. 3 : gw421.46/L66/31001397650 -
v. 1 : gwNDC:410.8/Sp8-2/181,
v. 1 : pbkNDC:410.8/Sp8-2/181, v. 3 : gwNDC:410.8/Sp8-2/183 -
v. 1 : gw410.8-G89-18110077332916,
v. 2 : gw410.8-G89-18210077332917, v. 3 : gw410.8-G89-18310077355403 -
v. 1413.6:L-66:1831028160,
v. 2413.6:L-66:2831028170, v. 3413.6:L-66:3831028180 -
v. 1 : gw413.6:L66:13400166991,
v. 2 : gw13:L2:1-23400167007, v. 3 : gw13:L2:1-33400167015 -
v. 1 : gwFU:Li8001194003,8001211708,
v. 2 : gwFU:Li8001193625,8001193617, v. 3 : gwFU:Li8001193641,8001193633 -
v. 1A-01:22:(181)6705623038,
v. 2A-01:22:(182)6705785795, v. 3A-01:22:(183)6705783469 -
v. 1 : gw410.8||G 89||18100080218,
v. 2 : gw410.8||G 89||18200083784, v. 3 : gw410.8||G 89||18300087884 -
v. 1 : gw03850554091,
v. 2 : gw03850554107, v. 3 : gw03850554115, v. 103850428982, v. 203850428991 -
v. 1 : gw410.8||Gr||181282069568,
v. 2 : gw410.8||Gr||182282069569, v. 3 : gw410.8||Gr||183282069570 -
v. 1 : gw421.46||L66||100044854,
v. 2 : gw421.46||L66||290076601, v. 3 : gw421.46||L66||390076602,90076603 -
v. 1 : gw413.65||72||11200469,
v. 2 : gw413.65||72||21200576, v. 3 : gw413.65||72||31200370 -
名古屋大学 工学 図書室工中央書庫
v. 1 : gw413.6||L40642155,
v. 2 : gw413.6||L40642156, v. 3 : gw413.6||L40642157 -
名古屋大学 情報・言語合同図書室情報・言語
v. 1 : gw413.6||L40724598,
v. 2 : gw413.6||L40654205, v. 3 : gw413.6||L40724600 -
名古屋大学 理学 図書室理数理
v. 1 : gwLIO||8||24A-240488951,
v. 2 : gwLIO||8||24B-240488952, v. 3 : gwLIO||8||24C-340513475 -
v. 1 : gw410.8||46||1811881354794,
v. 2 : gw410.8||46||1821881354806, v. 3 : gw410.8||46||1831881354817 -
v. 1F515.35||8989203332,
v. 2F515.35||8989203333, v. 3F515.35||8989203334, v. 3F510||610761.49 -
v. 1 : gw410.8//G89//1812081038650,
v. 2 : gw410.8//G892081038671, v. 3 : gw410.8//G892081038693 -
v. 1 : gwSAe:13:181128034866,
v. 2 : gwSAe:13:182128034867$, v. 3 :gwSAe:13:183A1285807794 -
v. 1 : gw410||111||18194027282,
v. 2 : gw410||111||18294027294, v. 2 : us410||111||18291126858, v. 3 : gw410||111||18394027305, v. 3 : us410||111||18391126861 -
v. 1 : gw413.67||L66||12381415946,
v. 2 : gw413.67||L66||22381415957, v. 3 : gw413.67||L66||32381415968 -
v. 1 : gw410.8/G 89/18129157401,
v. 2 : gw410.8/G 89/18229157402, v. 3 : gw410.8/G 89/18329157406 -
v. 2 : us413.65||L1||1-2BE0102398,
v. 1 : gw413.65||L1||1-1BE0101762, v. 1 : us413.65||L1||1-1BE0101762, v. 3 : us413.65||L1||1-3T0025249 -
室蘭工業大学 附属図書館研究室
v. 1 : gw410.8||v.181032486,
v. 2 : gw410.8||v.182032796, v. 3 : gw410.8||v.183034496 -
v. 1 : gw410.8/G785/1810410132696,
v. 2 : gw410.8/G785/1820410149049, v. 3 : gw410.8/G785/1830410203400, 410.8/G785/1810410134224 -
該当する所蔵館はありません
- すべての絞り込み条件を解除する
注記
Translation of Problèmes aux limites non homogènes et applications
Bibliography: v. 1, p. [309]-357; v. 2, p. [208]-242; v. 3, p. [290]-308
内容説明・目次
- 巻冊次
-
v. 1 : gw ISBN 9783540053637
内容説明
目次
- 1 Hilbert Theory of Trace and Interpolation Spaces.- 1. Some Function Spaces.- 1.1 Sobolev Spaces.- 1.2 The Case of the Entire Space.- 1.3 The Half-Space Case.- 1.4 Orientation.- 2. Intermediate Derivatives Theorem.- 2.1 Intermediate Spaces.- 2.2 Density and Extension Theorems.- 2.3 Intermediate Derivatives Theorem.- 2.4 A Simple Example.- 2.5 Interpolation Inequality.- 3. Trace Theorem.- 3.1 Continuity Properties of the Elements of W(a,b).- 3.2 Trace Theorem.- 4. Trace Spaces and Non-Integer Order Derivatives.- 4.1 Orientation. Definitions.- 4.2 "Intermediate Derivatives" and Trace Theorems.- 5. Interpolation Theorem.- 5.1 Main Theorem.- 5.2 Interpolation of a Family of Operators.- 6. Reiteration Properties and Duality of the Spaces [X, Y]0.- 6.1 Reiteration.- 6.2 Duality.- 7. The Spaces Hs(Rn) and Hs(?).- 7.1 Hs (Rn)-Spaces.- 7.2 Traces on the Boundary of a Half-Space.- 7.3 Hs (?)-Spaces.- 8. Trace Theorem in Hm(?).- 8.1 Extension and Density Theorems.- 8.2 Trace Theorem.- 9. The Spaces Hs(?), Real s ? 0.- 9.1 Definition by Interpolation.- 9.2 Trace Theorem in Hs(?).- 9.3 Interpolation of Hs(?)-Spaces.- 9.4 Regularity Properties of Hs(?)-Functions.- 10. Some Further Properties of the Spaces [X, Y]0.- 10.1 Domains of Semi-Groups.- 10.2 Application to Hs (Rn).- 10.3 Application to Hs (0, ?).- 11. Subspaces of Hs(?). The Spaces H0s(?).- 11.1 H0s(?)-Spaces.- 11.2 A Property of Hs(?), 0 ? s < 1/2.- 11.3 The Extension by 0 outside ?.- 11.4 Characterization of H0s(?)-Spaces.- 11.5 Interpolation of H0s(?)-Spaces.- 12. The Spaces H?s(?), s > 0.- 12.1 Definition. First Properties.- 12.2 Interpolation between the Spaces H?s(?), s > 0.- 12.3 Interpolation between $$H\frac{<!-- -->{<!-- -->{s_1}}}{0}(\Gamma )$$ and $${H^{ - {s_2}}}(\Omega )$$, si > 0.- 12.4 Interpolation between $${H^{<!-- -->{s_1}}}(\Omega )$$ and $${H^{ - {s_2}}}(\Omega )$$, si > 0.- 12.5 Interpolation between $${H^{<!-- -->{s_1}}}(\Omega )$$ and $$({H^{<!-- -->{s_2}}}(\Omega ))'$$.- 12.6 Interpolation between $$H\frac{<!-- -->{<!-- -->{s_1}}}{0}(\Omega )$$ and $$({H^{<!-- -->{s_2}}}(\Omega ))'$$.- 12.7 A Lemma.- 12.8 Differential Operators on Hs(?).- 12.9 Invariance by Diffeomorphism of Hs(?)-Spaces.- 13. Intersection Interpolation.- 13.1 A General Result.- 13.2 Example of Application (I).- 13.3 Example of Application (II).- 13.4 Interpolation of Quotient Spaces.- 14. Holomorphic Interpolation.- 14.1 General Result.- 14.2 Interpolation of Spaces of Continuous Functions with Hilbert Range.- 14.3 A Result Pertaining to Interpolation of Subspaces.- 15. Another Intrinsic Definition of the Spaces [X, Y]0.- 16. Compactness Properties.- 17. Comments.- 18. Problems.- 2 Elliptic Operators. Hilbert Theory.- 1. Elliptic Operators and Regular Boundary Value Problems.- 1.1 Elliptic Operators.- 1.2 Properly and Strongly Elliptic Operators.- 1.3 Regularity Hypotheses on the Open Set ? and the Coefficients of the Operator A.- 1.4 The Boundary Operators.- 2. Green's Formula and Adjoint Boundary Value Problems.- 2.1 The Adjoint of A in the Sense of Distributions or Formal Adjoint.- 2.2 The Theorem on Green's Formula.- 2.3 Proof of the Theorem.- 2.4 A Variant of Green's Formula.- 2.5 Formal Adjoint Problems with Respect to Green's Formula.- 3. The Regularity of Solutions of Elliptic Equations in the Interior of ?.- 3.1 Two Lemmas.- 3.2 A priori Estimates in Rn.- 3.3 The Regularity in the Interior of Q and the Hypoellipticity of Elliptic Operators.- 4. A priori Estimates in the Half-Space.- 4.1 A new Formulation of the Covering Condition.- 4.2 A Lemma on Ordinary Differential Equations.- 4.3 First Application: Proof of Theorem 2.2.- 4.4 A priori Estimates in the Half-Space for the Case of Constant Coefficients.- 4.5 A priori Estimates in the Half-Space for the Case of Variable Coefficients.- 5. A priori Estimates in the Open Set ? and the Existence of Solutions in Hs(?)-Spaces, with Real s ? 2m.- 5.1 A priori Estimates in the Open Set ?.- 5.2 Existence of Solutions in Hs(?)-Spaces, with Integer s ? 2m.- 5.3 Precise Statement of the Compatibility Conditions for Existence.- 5.4 Existence of Solutions in Hs(?)-Spaces, with Real s ? 2m.- 6. Application of Transposition: Existence of Solutions in Hs(?)-Spaces, with Real s ? 0.- 6.1 The Transposition Method
- Generalities.- 6.2 Choice of the Form L.- 6.3 The Spaces ? (?) and DAs(?).- 6.4 Density Theorem.- 6.5 Trace Theorem, and Green's Formula for the Space DAs(?), s ? 0.- 6.6 Existence of Solutions in DAs(?)-Spaces, with Real s ? 0.- 7. Application of Interpolation: Existence of Solutions in Hs(?)-Spaces, with Real s, 0 2m.- 7.1 New Properties of ?s(?)-Spaces.- 7.2 Use of Interpolation
- First Results.- 7.3 The Final Results.- 8. Complements and Generalizations.- 8.1 Continuity of Traces on Surfaces Neighbouring ?.- 8.2 A Generalization
- Application to Dirichlet's Problem.- 8.3 Remarks on the Hypotheses on A and Bj.- 8.4 The Realization of A in L2(?).- 8.5 Some Remarks on the Index of ?.- 8.6 Uniqueness and Surjectivity Theorems.- 9. Variational Theory of Boundary Value Problems.- 9.1 Variational Problems.- 9.2 The Problem.- 9.3 A Counter-Example.- 9.4 Variational Formulation and Green's Formula.- 9.5 "Concrete" Variational Problems.- 9.6 Coercive Forms and Problems.- 9.7 Regularity of Solutions.- 9.8 Generalizations (I).- 9.9 Generalizations (II).- 10. Comments.- 11. Problems.- 3 Variational Evolution Equations.- 1. An Isomorphism Theorem.- 1.1 Notation.- 1.2 Isomorphism Theorem.- 1.3 The Adjoint ?*.- 1.4 Proof of Theorem 1.1.- 2. Transposition.- 2.1 Generalities.- 2.2 Adjoint Isomorphism Theorem.- 2.3 Transposition.- 3. Interpolation.- 3.1 General Application.- 3.2 Characterization of Interpolation Spaces.- 3.3 The Case "? = 1/2".- 4. Example: Abstract Parabolic Equations, Initial Condition Problem (I).- 4.1 Notation.- 4.2 The Operator M.- 4.3 The Operator ?.- 4.4 Application of the Isomorphism Theorems.- 4.5 Choice of L in (4.20).- 4.6 Interpretation of the Problem.- 4.7 Examples.- 5. Example: Abstract Parabolic Equations, Initial Condition Problem (II).- 5.1 Some Interpolation Results.- 5.2 Interpretation of the Spaces ?1/2, ?*1/2.- 6. Example: Abstract Parabolic Equations, Periodic Solutions.- 6.1 Notation. The Operator ?.- 6.2 Application of the Isomorphism Theorems.- 6.3 Choice of L.- 6.4 Interpretation of the Problem.- 6.5 The Isomorphism of ?1/2 onto its Dual.- 7. Elliptic Regularization.- 7.1 The Elliptic Problem.- 7.2 Passage to the Limit.- 8. Equations of the Second Order in t.- 8.1 Notation.- 8.2 Existence and Uniqueness Theorem.- 8.3 Remarks on the Application of the General Theory of Section 1.- 8.4 Additional Regularity Results.- 8.5 Parabolic Regularization
- Direct Method and Application.- 9. Equations of the Second Order in t
- Transposition.- 9.1 Adjoint Isomorphism.- 9.2 Transposition.- 9.3 Choice of L.- 9.4 Trace Theorem.- 9.5 Variant
- Direct Method.- 9.6 Examples.- 10. Schroedinger Type Equations.- 10.1 Notation.- 10.2 Existence and Uniqueness Theorem.- 11. Schroedinger Type Equations
- Transposition.- 11.1 Adjoint Isomorphism.- 11.2 Transposition of (11.5).- 11.3 Choice of L.- 12. Comments.- 13. Problems.
- 巻冊次
-
v. 2 : gw ISBN 9783540054443
内容説明
目次
- 4 Parabolic Evolution Operators. Hilbert Theory.- 1. Notation and Hypotheses. First Regularity Theorem.- 1.1 Notation.- 1.2 Statement of the Problems.- 1.3 (Formal) Green's Formulas.- 1.4 First Existence and Uniqueness Theorem (Statement).- 1.5 Orientation.- 2. The Spaces Hr, s(Q). Trace Theorems. Compatibility Relations.- 2.1 Hr, s-Spaces.- 2.2 First Trace Theorem.- 2.3 Local Compatibility Relations.- 2.4 Global Compatibility Relations for a Particular Case.- 2.5 General Compatibility Relations.- 3. Evolution Equations and the Laplace Transform.- 3.1 Vector Distribution Solutions.- 3.2 L2-Solutions.- 4. The Case of Operators Independent of t.- 4.1 Hypotheses.- 4.2 Basic Inequalities.- 4.3 Solution of the Problem.- 5. Regularity.- 5.1 Preliminaries.- 5.2 Basic Inequalities.- 5.3 An Abstract Result.- 5.4 Solution of the Boundary Value Problem.- 6. Case of Time-Dependent Operators. Existence of Solutions in the Spaces H2r m, m(Q), Real r ? 1.- 6.1 Hypotheses. Statement of the Result.- 6.2 Local Result in t.- 6.3 Proof of Theorem 6.1.- 6.4 Regular Non-Homogeneous Problems.- Adjoint Isomorphism of Order r.- 7.1 The Adjoint Problem.- 7.2 Adjoint Isomorphism of Order r.- 8. Transposition of the Adjoint Isomorphism of Order r. (I): Generalities.- 8.1 Transposition.- 8.2 Orientation.- 8.3 The Spaces H??, ??(Q), H??, ??(?), ?, ? ? 0.- 8.4 (Formal) Choice of L.- 9. Choice of f. The Spaces ?2rm,r(Q).- 9.1 The Space ?2rm,r(Q).- 9.2 The Space ??2rm,?r(Q).- 9.3 Choice of f. The Space D?(r?1)(P)(Q).- 10. Trace Theorems for the Spaces D?(r?1)(P)(Q), r ? 1.- 10.1 Density Theorem.- 10.2 Trace Theorem on ?.- 10.3 Continuity of the Trace on Surfaces Neighbouring ?.- 10.4 Trace Theorem on ?0.- 10.5 Continuity of the Trace on Sections Neighbouring ?.- 11. Choice of gj and uo. The Spaces H2?m ??(?).- 11.1 The Spaces H2?m ??(?).- 11.2 Choice of gj.- 11.3 Choice of uo.- 12. Transposition of the Adjoint Isomorphism of Order ?. (II): Results
- Existence of Solutions in H2mr,r(Q)-Spaces, Real r ? 0.- 12.1 Final Choice of L.- 12.2 Results.- 12.3 Complements.- 13. State of the Problem. Complements on the Transposition of the Adjoint Isomorphism of Order 1.- 13.1 State of the Problem.- 13.2 Complements on the Transposition of the Adjoint Isomorphism of Order 1.- 13.3 Orientation.- 14. Some Interpolation Theorems.- 14.1 Notation. Statement of the Main Result.- 14.2 Outline of the Proof.- 14.3 First Auxiliary Interpolation Theorem.- 14.4 Second Auxiliary Interpolation Theorem.- 14.5 Third Auxiliary Interpolation Theorem.- 14.6 Proof of Theorem 14.1.- 15. Final Results
- Existence of Solutions in the Spaces H2mr,r(Q), 0 1. Applications.- 15.1 Application of the Results of Section 14.- 15.2 Examples
- Generalities.- 15.3 Examples (I).- 15.4 Examples (II).- 15.5 Some Complements on the Dirichlet Problem.- 16. Comments.- 17. Problems.- 5 Hyperbolic Evolution Operators, of Petrowski and of Schroedinger. Hilbert Theory.- 1. Application of the Results of Chapter 3 and General Remarks.- 1.1 Notation. Hypotheses.- 1.2 Application of the Results of Chapter 3.- 1.3 A Counter-Example.- 2. A Regularity Theorem (I).- 3. Regular Non-Homogeneous Problems.- 3.1 Statement of the Problem.- 3.2 The Compatibility Relations.- 3.3 The Case of the Dirichlet Problem.- 4. Transposition.- 4.1 Adjoint Isomorphism.- 4.2 Transposition.- 4.3 Choice of L.- 4.4 Conclusion.- 5. Interpolation.- 5.1 Statement of the Problem.- 5.2 Some Interpolation Results.- 5.3 Consequences.- 5.4 The Case of the Dirichlet Problem.- 6. Applications and Examples.- 6.1 General Results.- 6.2 Examples.- 7. Regularity Theorem (II).- 7.1 Statement.- 7.2 Proof of Theorem 7.1.- 8. Non-Integer Order Regularity Theorem.- 8.1 Orientation.- 8.2 Interpolation in r.- 8.3 Interpretation of the Space V(2r?1)m,2r(Q), r ? 1.- 9. Adjoint Isomorphism of Order r and Transposition.- 9.1 Adjoint Isomorphism of Order r.- 9.2 Transposition.- 9.3 Formal Choice of L.- 10. Choice of f, $$ \vec g $$, u0, u1.- 10.1 Choice of f.- 10.2 The Space $$ D_{A + D_t^2}^{ - \left( {2r - 1} \right)}\left( Q \right) $$.- 10.3 Choice of gj.- 10.4 Choice of u0, u1.- 10.5 Conclusion.- 11. Trace Theorems in the Space $$ D_{A + D_t^2}^{ - \left( {2r - 1} \right)}\left( Q \right) $$.- 11.1 Density Theorem.- 11.2 Traces on ?.- 11.3 Continuity of the Trace on Neighbouring Surfaces.- 11.4 Traces on ?0.- 11.5 Continuity of the Trace on Sections Neighbouring ?0.- 11.6 Remark.- 12. Schroedinger Type Equations.- 12.1 Notation.- 12.2 First Regularity Theorem. Parabolic Regularization.- 12.3 Second Regularity Theorem.- 12.4 r-Isomorphism Theorem.- 12.5 Choice of L.- 12.6 Trace Theorem.- 13. Comments.- 14. Problems.- 6 Applications to Optimal Control Problems.- 1. Statement of the Problems for the Linear Parabolic Case.- 1.1 Notation.- 1.2 Optimization Problems.- 2. Choice of the Norms in the Cost Function.- 2.1 Reminder. Condition on K1(Q).- 2.2 Space Described by $$ \vec S\,y $$. Conditions on K2(?).- 2.3 Space Described by y(x, T
- u). Condition on K3(?).- 3. Optimality Condition for Quadratic Cost Functions.- 3.1 Notation.- 3.2 Optimality Condition.- 4. Optimality Condition and Green's Formula.- 4.1 Optimality Condition. Application of Section 3.2.- 4.2 The Isomorphisms ?i.- 4.3 The "Adjoint" Problem.- 4.4 New Form of the Optimality Condition.- 5. The Particular Case $$ \mu \,\, = \,\,m\,\, + \,\,\frac{1}{2} $$, E3 ? 0.- 5.1 Properties of y.- 5.2 Choice of K1(Q).- 5.3 Choice of K2(?) and K3(?).- 5.4 Adjoint Problem and Optimality Condition.- 6. Consequences of the Optimality Condition (I).- 6.1 Generalities.- 6.2 Consequences of Theorem 6.1.- 7. Consequences of the Optimality Condition (II).- 7.1 Additional Hypotheses.- 7.2 Optimality Condition.- 8. Complements on the Choice of the Spaces Ki.- 8.1 Orientation.- 8.2 Choice of K1(Q).- 8.3 Choice of K2(?).- 8.4 Choice of K3(?).- 9. Examples.- 10. Non-Parabolic Cases. Statement of the Problems. Generalities.- 10.1 Notation.- 10.2 Cost Function.- 10.3 Optimality Condition (I).- 10.4 Adjoint Problem.- 10.5 Green's Formula.- 10.6 Optimality Condition (II).- 10.7 Consequences.- 11. Applications. Examples.- 11.1 Control in the Boundary Conditions.- 11.2 Choice of K1.- 11.3 Choice of K2.- 11.4 Examples.- 12. Comments.- 13. Problems.- Boundary Value Problems and Operator Extensions.- 1. Statement of the Problem. Well-Posed Spaces.- 1.1 Notation.- 2. Abstract Boundary Conditions.- 2.1 Boundary Spaces and Operators.- 2.2 Characterization of Well-Posed Spaces.- 3. Example 1. Elliptic Operators.- 3.1 Notation.- 3.2 The Boundary Operators and Spaces.- 3.3 Consequences.- 3.4 Various Remarks.- 4. Example 2. Parabolic Operators.- 4.1 Notation.- 4.2 The Boundary Operators and Spaces.- 4.3 Consequences.- 5.1 Notation.- 5.2 Formal Results.- 6. Comments and Problems.
- 巻冊次
-
v. 3 : gw ISBN 9783540058328
目次
- 7 Scalar and Vector Ultra-Distributions.- 1. Scalar-Valued Functions of Class Mk.- 1.1 The Sequences {Mk}.- 1.2 The Space $${D_{<!-- -->{M_k}}}\left( H \right)$$.- 1.3 The Spaces $${D_{<!-- -->{M_k}}}\left( H \right)$$ and $${\varepsilon _{<!-- -->{M_k}}}\left( H \right)$$.- 2. Scalar-Valued Ultra-Distributions of Class Mk
- Generalizations.- 2.1 The Space $$D{'_{<!-- -->{M_k}}}\left( \Omega \right)$$.- 2.2 Non-Symmetric Spaces of Class Mk.- 2.3 Scalar Ultra-Distributions of Beurling-Type.- 3. Spaces of Analytic Functions and of Analytic Functionals.- 3.1 The Spaces H(H) and H'(H).- 3.2 The Spaces H(?) and H(?).- 4. Vector-Valued Functions of Class Mk.- 4.1 The Space $${D_{<!-- -->{M_k}}}\left( {\phi
- F} \right)$$.- 4.2 The Spaces $${D_{<!-- -->{M_k}}}\left( {H,F} \right)$$ and $${E_{<!-- -->{M_k}}}\left( {\phi
- F} \right)$$.- 4.3 The Spaces $${D_{ \pm ,{M_k}}}\left( {\phi
- F} \right)$$.- 4.4 Remarks on the Topological Properties of the Spaces $${D_{<!-- -->{M_k}}}\left( {\phi
- F} \right),{E_{<!-- -->{M_k}}}\left( {\phi
- F} \right),{D_{ \pm ,{M_k}}}\left( {\phi
- F} \right)$$.- 5. Vector-Valued Ultra-Distributions of Class Mk
- Generalizations.- 5.1 Recapitulation on Vector-Valued Distributions.- 5.2 The Space $$D{'_{<!-- -->{M_k}}}\left( {\phi
- F} \right)$$.- 5.3 The Space $$D{'_{ \pm ,{M_k}}}\left( {\phi
- F} \right)$$.- 5.4 Vector-Valued Ultra-Distributions of Beurling-Type.- 5.5 The Particular Case: F = Banach Space.- 6. Comments.- 8 Elliptic Boundary Value Problems in Spaces of Distributions and Ultra-Distributions.- 1. Regularity of Solutions of Elliptic Boundary Value Problems in Spaces of Analytic Functions and of Class Mk
- Statement of the Problems and Results.- 1.1 Recapitulation on Elliptic Boundary Value Problems.- 1.2 Statement of the Mk-Regularity Results.- 1.3 Reduction of the Problem to the Case of the Half-Ball.- 2. The Theorem on "Elliptic Iterates": Proof.- 2.1 Some Lemmas.- 2.2 The Preliminary Estimate.- 2.3 Bounds for the Tangential Derivatives.- 2.4 Bounds for the Normal Derivatives.- 2.5 Proof of Theorem 1.3.- 2.6 Complements and Remarks.- 3. Application of Transposition
- Existence of Solutions in the Space D'(?) of Distributions.- 3.1 Generalities.- 3.2 Choice of the Form L
- the Space ?(?) and its Dual.- 3.3 Final Choice of the Form L
- the Space Y.- 3.4 Density Theorem.- 3.5 Trace Theorem and Green's Formula in Y.- 3.6 The Existence of Solutions in the Space Y.- 3.7 Continuity of Traces on Surfaces Neighbouring ?.- 4. Existence of Solutions in the Space $$D{'_{<!-- -->{M_k}}}\left( \Omega \right)$$ of Ultra-Distributions.- 4.1 Generalities.- 4.2 The Space $${\Xi _{<!-- -->{M_k}}}\left( \Omega \right)$$ and its Dual.- 4.3 The Space $${Y_{<!-- -->{M_k}}}$$ and the Existence of Solutions in $${Y_{<!-- -->{M_k}}}$$.- 4.4 Application to the Regularity in the Interior of Ultra-Distribution Solutions of the Equation Au = f.- 5. Comments.- 6. Problems.- 9 Evolution Equations in Spaces of Distributions and Ultra-Distributions.- 1. Regularity Results. Equations of the First Order in t.- 1.1 Orientation and Notation.- 1.2 Regularity in the Spaces D+.- 1.3 Regularity in the Spaces $${D_{ + ,{M_k}}}$$.- 1.4 Regularity in Beurling Spaces.- 1.5 First Applications.- 2. Equations of the Second Order in t.- 2.1 Statement of the Main Results.- 2.2 Proof of Theorem 2.1.- 2.3 Proof of Theorem 2.2.- 3. Singular Equations of the Second Order in t.- 3.1 Statement of the Main Results.- 3.2 Proof of Theorem 3.1.- 4. Schroedinger-Type Equations.- 4.1 Statement of the Main Results.- 4.2 Proof of Theorem 4.1.- 4.3 Proof of Theorem 4.2.- 5. Stability Results in Mk-Classes.- 5.1 Parabolic Regularization.- 5.2 Approximation by Systems of Cauchy-Kowaleska Type (I).- 5.3 Approximation by Systems of Cauchy-Kowaleska Type (II).- 6. Transposition.- 6.1 Orientation.- 6.2 The Parabolic Case.- 6.3 The Second Order in t Case and the Schroedinger Case.- 7. Semi-Groups.- 7.1 Orientation.- 7.2 The Space of Vectors of Class Mk.- 7.3 The Semi-Group G in the Spaces D(A?
- Mk). Applications.- 7.4 The Transposed Settings. Applications.- 7.5 Another Mk-Regularity Result.- 8. Mk -Classes and Laplace Transformation.- 8.1 Orientation-Hypotheses.- 8.2 Mk -Regularity Result.- 8.3 Transposition.- 9. General Operator Equations.- 9.1 General Results.- 9.2 Application. Periodic Problems.- 9.3 Transposition.- 10. The Case of a Finite Interval ]0, T[.- 10.1 Orientation. General Problems.- 10.2 Space Described by v(0) as v Describes X.- 10.3 The Space $${\Xi _{<!-- -->{M_k}}}$$.- 10.4 Choice of L.- 10.5 The Space Y and Trace Theorems.- 10.6 Non-Homogeneous Problems.- 11. Distribution and Ultra-Distribution Semi-Groups.- 11.1 Distribution Semi-Groups.- 11.2 Ultra-Distribution Semi-Groups.- 12. A General Local Existence Result.- 12.1 Statement of the Result.- 12.2 Examples.- 13. Comments.- 14. Problems.- 10 Parabolic Boundary Value Problems in Spaces of Ultra-Distributions.- 1. Regularity in the Interior of Solutions of Parabolic Equations.- 1.1 The Hypoellipticity of Parabolic Equations.- 1.2 The Regularity in the Interior in Gevrey Spaces.- 2. The Regularity at the Boundary of Solutions of Parabolic Boundary Value Problems.- 2.1 The Regularity in the Space $$D\left( {\bar Q} \right)$$.- 2.2 The Regularity in Gevrey Spaces.- 3. Application of Transposition: The Finite Cylinder Case.- 3.1 The Existence of Solutions in the Space D'(Q): Generalities, the Spaces X and Y.- 3.2 Space Described by ?v as v Describes X.- 3.3 Trace and Existence Theorems in the Space Y.- 3.4 The Existence of Solutions in the Spaces D's,r(Q) of Gevrey Ultra-Distributions, with r > 1, s ? 2m.- 4. Application of Transposition: The Infinite Cylinder Case.- 4.1 The Existence of Solutions in the Space D' (R
- D'(?)): The Space X_.- 4.2 The Existence of Solutions in the Space D'+ (R
- D'(?)): The Space Y+ and the Trace and Existence Theorems.- 4.3 The Existence of Solutions in the Spaces D'+,s(R
- D'r(?)), with r > 1, s ? 2m.- 4.4 Remarks on the Existence of Solutions and the Trace Theorems in other Spaces of Ultra-Distributions.- 5. Comments.- 6. Problems.- 11 Evolution Equations of the Second Order in t and of Schroedinger Type.- 1. Equations of the Second Order in t
- Regularity of the Solutions of Boundary Value Problems.- 1.1 The Regularity in the Space $$D\left( {\bar Q} \right)$$.- 1.2 The Regularity in Gevrey Spaces.- 2. Equations of the Second Order in t
- Application of Transposition and Existence of Solutions in Spaces of Distributions.- 2.1 Generalities.- 2.2 The Space $${D_{ - ,\gamma }}\left( {\left[ {0,T} \right]
- {D_\gamma }\left( {\bar \Omega } \right)} \right)$$ and its Dual.- 2.3 The Spaces X and Y.- 2.4 Study of the Operator ?.- 2.5 Trace and Existence Theorems in the Space Y.- 2.6 Complements on the Trace Theorems.- 2.7 The Infinite Cylinder Case.- 3. Equations of the Second Order in t
- Application of Transposition and Existence of Solutions in Spaces of Ultra-Distributions.- 3.1 The Difficulties in the Finite Cylinder Case.- 3.2 The Infinite Cylinder Case for m > 1.- 4. Schroedinger Equations
- Complements for Parabolic Equations.- 4.1 Regularity Results for the Schroedinger Equation.- 4.2 The Non-Homogeneous Boundary Value Problems for the Schroedinger Equation.- 4.3 Remarks on Parabolic Equations.- 5. Comments.- 6. Problems.- Appendix. Calculus of Variations in Gevrey-Type Spaces.
- 巻冊次
-
v. 1 : pbk ISBN 9783642651632
内容説明
目次
- 1 Hilbert Theory of Trace and Interpolation Spaces.- 1. Some Function Spaces.- 1.1 Sobolev Spaces.- 1.2 The Case of the Entire Space.- 1.3 The Half-Space Case.- 1.4 Orientation.- 2. Intermediate Derivatives Theorem.- 2.1 Intermediate Spaces.- 2.2 Density and Extension Theorems.- 2.3 Intermediate Derivatives Theorem.- 2.4 A Simple Example.- 2.5 Interpolation Inequality.- 3. Trace Theorem.- 3.1 Continuity Properties of the Elements of W(a,b).- 3.2 Trace Theorem.- 4. Trace Spaces and Non-Integer Order Derivatives.- 4.1 Orientation. Definitions.- 4.2 "Intermediate Derivatives" and Trace Theorems.- 5. Interpolation Theorem.- 5.1 Main Theorem.- 5.2 Interpolation of a Family of Operators.- 6. Reiteration Properties and Duality of the Spaces [X, Y]0.- 6.1 Reiteration.- 6.2 Duality.- 7. The Spaces Hs(Rn) and Hs(?).- 7.1 Hs (Rn)-Spaces.- 7.2 Traces on the Boundary of a Half-Space.- 7.3 Hs (?)-Spaces.- 8. Trace Theorem in Hm(?).- 8.1 Extension and Density Theorems.- 8.2 Trace Theorem.- 9. The Spaces Hs(?), Real s ? 0.- 9.1 Definition by Interpolation.- 9.2 Trace Theorem in Hs(?).- 9.3 Interpolation of Hs(?)-Spaces.- 9.4 Regularity Properties of Hs(?)-Functions.- 10. Some Further Properties of the Spaces [X, Y]0.- 10.1 Domains of Semi-Groups.- 10.2 Application to Hs (Rn).- 10.3 Application to Hs (0, ?).- 11. Subspaces of Hs(?). The Spaces H0s(?).- 11.1 H0s(?)-Spaces.- 11.2 A Property of Hs(?), 0 ? s < 1/2.- 11.3 The Extension by 0 outside ?.- 11.4 Characterization of H0s(?)-Spaces.- 11.5 Interpolation of H0s(?)-Spaces.- 12. The Spaces H?s(?), s > 0.- 12.1 Definition. First Properties.- 12.2 Interpolation between the Spaces H?s(?), s > 0.- 12.3 Interpolation between $$H\frac{<!-- -->{<!-- -->{s_1}}}{0}(\Gamma )$$ and $${H^{ - {s_2}}}(\Omega )$$, si > 0.- 12.4 Interpolation between $${H^{<!-- -->{s_1}}}(\Omega )$$ and $${H^{ - {s_2}}}(\Omega )$$, si > 0.- 12.5 Interpolation between $${H^{<!-- -->{s_1}}}(\Omega )$$ and $$({H^{<!-- -->{s_2}}}(\Omega ))'$$.- 12.6 Interpolation between $$H\frac{<!-- -->{<!-- -->{s_1}}}{0}(\Omega )$$ and $$({H^{<!-- -->{s_2}}}(\Omega ))'$$.- 12.7 A Lemma.- 12.8 Differential Operators on Hs(?).- 12.9 Invariance by Diffeomorphism of Hs(?)-Spaces.- 13. Intersection Interpolation.- 13.1 A General Result.- 13.2 Example of Application (I).- 13.3 Example of Application (II).- 13.4 Interpolation of Quotient Spaces.- 14. Holomorphic Interpolation.- 14.1 General Result.- 14.2 Interpolation of Spaces of Continuous Functions with Hilbert Range.- 14.3 A Result Pertaining to Interpolation of Subspaces.- 15. Another Intrinsic Definition of the Spaces [X, Y]0.- 16. Compactness Properties.- 17. Comments.- 18. Problems.- 2 Elliptic Operators. Hilbert Theory.- 1. Elliptic Operators and Regular Boundary Value Problems.- 1.1 Elliptic Operators.- 1.2 Properly and Strongly Elliptic Operators.- 1.3 Regularity Hypotheses on the Open Set ? and the Coefficients of the Operator A.- 1.4 The Boundary Operators.- 2. Green's Formula and Adjoint Boundary Value Problems.- 2.1 The Adjoint of A in the Sense of Distributions or Formal Adjoint.- 2.2 The Theorem on Green's Formula.- 2.3 Proof of the Theorem.- 2.4 A Variant of Green's Formula.- 2.5 Formal Adjoint Problems with Respect to Green's Formula.- 3. The Regularity of Solutions of Elliptic Equations in the Interior of ?.- 3.1 Two Lemmas.- 3.2 A priori Estimates in Rn.- 3.3 The Regularity in the Interior of Q and the Hypoellipticity of Elliptic Operators.- 4. A priori Estimates in the Half-Space.- 4.1 A new Formulation of the Covering Condition.- 4.2 A Lemma on Ordinary Differential Equations.- 4.3 First Application: Proof of Theorem 2.2.- 4.4 A priori Estimates in the Half-Space for the Case of Constant Coefficients.- 4.5 A priori Estimates in the Half-Space for the Case of Variable Coefficients.- 5. A priori Estimates in the Open Set ? and the Existence of Solutions in Hs(?)-Spaces, with Real s ? 2m.- 5.1 A priori Estimates in the Open Set ?.- 5.2 Existence of Solutions in Hs(?)-Spaces, with Integer s ? 2m.- 5.3 Precise Statement of the Compatibility Conditions for Existence.- 5.4 Existence of Solutions in Hs(?)-Spaces, with Real s ? 2m.- 6. Application of Transposition: Existence of Solutions in Hs(?)-Spaces, with Real s ? 0.- 6.1 The Transposition Method
- Generalities.- 6.2 Choice of the Form L.- 6.3 The Spaces ? (?) and DAs(?).- 6.4 Density Theorem.- 6.5 Trace Theorem, and Green's Formula for the Space DAs(?), s ? 0.- 6.6 Existence of Solutions in DAs(?)-Spaces, with Real s ? 0.- 7. Application of Interpolation: Existence of Solutions in Hs(?)-Spaces, with Real s, 0 < s < 2m.- 7.1 New Properties of ?s(?)-Spaces.- 7.2 Use of Interpolation
- First Results.- 7.3 The Final Results.- 8. Complements and Generalizations.- 8.1 Continuity of Traces on Surfaces Neighbouring ?.- 8.2 A Generalization
- Application to Dirichlet's Problem.- 8.3 Remarks on the Hypotheses on A and Bj.- 8.4 The Realization of A in L2(?).- 8.5 Some Remarks on the Index of ?.- 8.6 Uniqueness and Surjectivity Theorems.- 9. Variational Theory of Boundary Value Problems.- 9.1 Variational Problems.- 9.2 The Problem.- 9.3 A Counter-Example.- 9.4 Variational Formulation and Green's Formula.- 9.5 "Concrete" Variational Problems.- 9.6 Coercive Forms and Problems.- 9.7 Regularity of Solutions.- 9.8 Generalizations (I).- 9.9 Generalizations (II).- 10. Comments.- 11. Problems.- 3 Variational Evolution Equations.- 1. An Isomorphism Theorem.- 1.1 Notation.- 1.2 Isomorphism Theorem.- 1.3 The Adjoint ?*.- 1.4 Proof of Theorem 1.1.- 2. Transposition.- 2.1 Generalities.- 2.2 Adjoint Isomorphism Theorem.- 2.3 Transposition.- 3. Interpolation.- 3.1 General Application.- 3.2 Characterization of Interpolation Spaces.- 3.3 The Case "? = 1/2".- 4. Example: Abstract Parabolic Equations, Initial Condition Problem (I).- 4.1 Notation.- 4.2 The Operator M.- 4.3 The Operator ?.- 4.4 Application of the Isomorphism Theorems.- 4.5 Choice of L in (4.20).- 4.6 Interpretation of the Problem.- 4.7 Examples.- 5. Example: Abstract Parabolic Equations, Initial Condition Problem (II).- 5.1 Some Interpolation Results.- 5.2 Interpretation of the Spaces ?1/2, ?*1/2.- 6. Example: Abstract Parabolic Equations, Periodic Solutions.- 6.1 Notation. The Operator ?.- 6.2 Application of the Isomorphism Theorems.- 6.3 Choice of L.- 6.4 Interpretation of the Problem.- 6.5 The Isomorphism of ?1/2 onto its Dual.- 7. Elliptic Regularization.- 7.1 The Elliptic Problem.- 7.2 Passage to the Limit.- 8. Equations of the Second Order in t.- 8.1 Notation.- 8.2 Existence and Uniqueness Theorem.- 8.3 Remarks on the Application of the General Theory of Section 1.- 8.4 Additional Regularity Results.- 8.5 Parabolic Regularization
- Direct Method and Application.- 9. Equations of the Second Order in t
- Transposition.- 9.1 Adjoint Isomorphism.- 9.2 Transposition.- 9.3 Choice of L.- 9.4 Trace Theorem.- 9.5 Variant
- Direct Method.- 9.6 Examples.- 10. Schroedinger Type Equations.- 10.1 Notation.- 10.2 Existence and Uniqueness Theorem.- 11. Schroedinger Type Equations
- Transposition.- 11.1 Adjoint Isomorphism.- 11.2 Transposition of (11.5).- 11.3 Choice of L.- 12. Comments.- 13. Problems.
- 巻冊次
-
v. 3 : pbk ISBN 9783642653957
内容説明
目次
- 7 Scalar and Vector Ultra-Distributions.- 1. Scalar-Valued Functions of Class Mk.- 1.1 The Sequences {Mk}.- 1.2 The Space $${D_{<!-- -->{M_k}}}\left( H \right)$$.- 1.3 The Spaces $${D_{<!-- -->{M_k}}}\left( H \right)$$ and $${\varepsilon _{<!-- -->{M_k}}}\left( H \right)$$.- 2. Scalar-Valued Ultra-Distributions of Class Mk
- Generalizations.- 2.1 The Space $$D{'_{<!-- -->{M_k}}}\left( \Omega \right)$$.- 2.2 Non-Symmetric Spaces of Class Mk.- 2.3 Scalar Ultra-Distributions of Beurling-Type.- 3. Spaces of Analytic Functions and of Analytic Functionals.- 3.1 The Spaces H(H) and H'(H).- 3.2 The Spaces H(?) and H(?).- 4. Vector-Valued Functions of Class Mk.- 4.1 The Space $${D_{<!-- -->{M_k}}}\left( {\phi
- F} \right)$$.- 4.2 The Spaces $${D_{<!-- -->{M_k}}}\left( {H,F} \right)$$ and $${E_{<!-- -->{M_k}}}\left( {\phi
- F} \right)$$.- 4.3 The Spaces $${D_{ \pm ,{M_k}}}\left( {\phi
- F} \right)$$.- 4.4 Remarks on the Topological Properties of the Spaces $${D_{<!-- -->{M_k}}}\left( {\phi
- F} \right),{E_{<!-- -->{M_k}}}\left( {\phi
- F} \right),{D_{ \pm ,{M_k}}}\left( {\phi
- F} \right)$$.- 5. Vector-Valued Ultra-Distributions of Class Mk
- Generalizations.- 5.1 Recapitulation on Vector-Valued Distributions.- 5.2 The Space $$D{'_{<!-- -->{M_k}}}\left( {\phi
- F} \right)$$.- 5.3 The Space $$D{'_{ \pm ,{M_k}}}\left( {\phi
- F} \right)$$.- 5.4 Vector-Valued Ultra-Distributions of Beurling-Type.- 5.5 The Particular Case: F = Banach Space.- 6. Comments.- 8 Elliptic Boundary Value Problems in Spaces of Distributions and Ultra-Distributions.- 1. Regularity of Solutions of Elliptic Boundary Value Problems in Spaces of Analytic Functions and of Class Mk
- Statement of the Problems and Results.- 1.1 Recapitulation on Elliptic Boundary Value Problems.- 1.2 Statement of the Mk-Regularity Results.- 1.3 Reduction of the Problem to the Case of the Half-Ball.- 2. The Theorem on "Elliptic Iterates": Proof.- 2.1 Some Lemmas.- 2.2 The Preliminary Estimate.- 2.3 Bounds for the Tangential Derivatives.- 2.4 Bounds for the Normal Derivatives.- 2.5 Proof of Theorem 1.3.- 2.6 Complements and Remarks.- 3. Application of Transposition
- Existence of Solutions in the Space D'(?) of Distributions.- 3.1 Generalities.- 3.2 Choice of the Form L
- the Space ?(?) and its Dual.- 3.3 Final Choice of the Form L
- the Space Y.- 3.4 Density Theorem.- 3.5 Trace Theorem and Green's Formula in Y.- 3.6 The Existence of Solutions in the Space Y.- 3.7 Continuity of Traces on Surfaces Neighbouring ?.- 4. Existence of Solutions in the Space $$D{'_{<!-- -->{M_k}}}\left( \Omega \right)$$ of Ultra-Distributions.- 4.1 Generalities.- 4.2 The Space $${\Xi _{<!-- -->{M_k}}}\left( \Omega \right)$$ and its Dual.- 4.3 The Space $${Y_{<!-- -->{M_k}}}$$ and the Existence of Solutions in $${Y_{<!-- -->{M_k}}}$$.- 4.4 Application to the Regularity in the Interior of Ultra-Distribution Solutions of the Equation Au = f.- 5. Comments.- 6. Problems.- 9 Evolution Equations in Spaces of Distributions and Ultra-Distributions.- 1. Regularity Results. Equations of the First Order in t.- 1.1 Orientation and Notation.- 1.2 Regularity in the Spaces D+.- 1.3 Regularity in the Spaces $${D_{ + ,{M_k}}}$$.- 1.4 Regularity in Beurling Spaces.- 1.5 First Applications.- 2. Equations of the Second Order in t.- 2.1 Statement of the Main Results.- 2.2 Proof of Theorem 2.1.- 2.3 Proof of Theorem 2.2.- 3. Singular Equations of the Second Order in t.- 3.1 Statement of the Main Results.- 3.2 Proof of Theorem 3.1.- 4. Schroedinger-Type Equations.- 4.1 Statement of the Main Results.- 4.2 Proof of Theorem 4.1.- 4.3 Proof of Theorem 4.2.- 5. Stability Results in Mk-Classes.- 5.1 Parabolic Regularization.- 5.2 Approximation by Systems of Cauchy-Kowaleska Type (I).- 5.3 Approximation by Systems of Cauchy-Kowaleska Type (II).- 6. Transposition.- 6.1 Orientation.- 6.2 The Parabolic Case.- 6.3 The Second Order in t Case and the Schroedinger Case.- 7. Semi-Groups.- 7.1 Orientation.- 7.2 The Space of Vectors of Class Mk.- 7.3 The Semi-Group G in the Spaces D(A?
- Mk). Applications.- 7.4 The Transposed Settings. Applications.- 7.5 Another Mk-Regularity Result.- 8. Mk -Classes and Laplace Transformation.- 8.1 Orientation-Hypotheses.- 8.2 Mk -Regularity Result.- 8.3 Transposition.- 9. General Operator Equations.- 9.1 General Results.- 9.2 Application. Periodic Problems.- 9.3 Transposition.- 10. The Case of a Finite Interval ]0, T[.- 10.1 Orientation. General Problems.- 10.2 Space Described by v(0) as v Describes X.- 10.3 The Space $${\Xi _{<!-- -->{M_k}}}$$.- 10.4 Choice of L.- 10.5 The Space Y and Trace Theorems.- 10.6 Non-Homogeneous Problems.- 11. Distribution and Ultra-Distribution Semi-Groups.- 11.1 Distribution Semi-Groups.- 11.2 Ultra-Distribution Semi-Groups.- 12. A General Local Existence Result.- 12.1 Statement of the Result.- 12.2 Examples.- 13. Comments.- 14. Problems.- 10 Parabolic Boundary Value Problems in Spaces of Ultra-Distributions.- 1. Regularity in the Interior of Solutions of Parabolic Equations.- 1.1 The Hypoellipticity of Parabolic Equations.- 1.2 The Regularity in the Interior in Gevrey Spaces.- 2. The Regularity at the Boundary of Solutions of Parabolic Boundary Value Problems.- 2.1 The Regularity in the Space $$D\left( {\bar Q} \right)$$.- 2.2 The Regularity in Gevrey Spaces.- 3. Application of Transposition: The Finite Cylinder Case.- 3.1 The Existence of Solutions in the Space D'(Q): Generalities, the Spaces X and Y.- 3.2 Space Described by ?v as v Describes X.- 3.3 Trace and Existence Theorems in the Space Y.- 3.4 The Existence of Solutions in the Spaces D's,r(Q) of Gevrey Ultra-Distributions, with r > 1, s ? 2m.- 4. Application of Transposition: The Infinite Cylinder Case.- 4.1 The Existence of Solutions in the Space D' (R
- D'(?)): The Space X_.- 4.2 The Existence of Solutions in the Space D'+ (R
- D'(?)): The Space Y+ and the Trace and Existence Theorems.- 4.3 The Existence of Solutions in the Spaces D'+,s(R
- D'r(?)), with r > 1, s ? 2m.- 4.4 Remarks on the Existence of Solutions and the Trace Theorems in other Spaces of Ultra-Distributions.- 5. Comments.- 6. Problems.- 11 Evolution Equations of the Second Order in t and of Schroedinger Type.- 1. Equations of the Second Order in t
- Regularity of the Solutions of Boundary Value Problems.- 1.1 The Regularity in the Space $$D\left( {\bar Q} \right)$$.- 1.2 The Regularity in Gevrey Spaces.- 2. Equations of the Second Order in t
- Application of Transposition and Existence of Solutions in Spaces of Distributions.- 2.1 Generalities.- 2.2 The Space $${D_{ - ,\gamma }}\left( {\left[ {0,T} \right]
- {D_\gamma }\left( {\bar \Omega } \right)} \right)$$ and its Dual.- 2.3 The Spaces X and Y.- 2.4 Study of the Operator ?.- 2.5 Trace and Existence Theorems in the Space Y.- 2.6 Complements on the Trace Theorems.- 2.7 The Infinite Cylinder Case.- 3. Equations of the Second Order in t
- Application of Transposition and Existence of Solutions in Spaces of Ultra-Distributions.- 3.1 The Difficulties in the Finite Cylinder Case.- 3.2 The Infinite Cylinder Case for m > 1.- 4. Schroedinger Equations
- Complements for Parabolic Equations.- 4.1 Regularity Results for the Schroedinger Equation.- 4.2 The Non-Homogeneous Boundary Value Problems for the Schroedinger Equation.- 4.3 Remarks on Parabolic Equations.- 5. Comments.- 6. Problems.- Appendix. Calculus of Variations in Gevrey-Type Spaces.
「Nielsen BookData」 より