Matrix analysis
Author(s)
Bibliographic Information
Matrix analysis
(Graduate texts in mathematics, 169)
Springer, c1997
- softcover
Available at / 143 libraries
-
University of Toyama Library, Central Library図
411.3||B46||Ma21030101,
softcover411.3||B46||Ma20171007841 -
No Libraries matched.
- Remove all filters.
Note
Includes bibliographical references (p. [325]-338) and index
Description and Table of Contents
Description
This book presents a substantial part of matrix analysis that is functional analytic in spirit. Topics covered include the theory of majorization, variational principles for eigenvalues, operator monotone and convex functions, and perturbation of matrix functions and matrix inequalities. The book offers several powerful methods and techniques of wide applicability, and it discusses connections with other areas of mathematics.
Table of Contents
I A Review of Linear Algebra.- I.1 Vector Spaces and Inner Product Spaces.- I.2 Linear Operators and Matrices.- I.3 Direct Sums.- I.4 Tensor Products.- I.5 Symmetry Classes.- I.6 Problems.- I.7 Notes and References.- II Majorisation and Doubly Stochastic Matrices.- II.1 Basic Notions.- II. 2 Birkhoff's Theorem.- II.3 Convex and Monotone Functions.- II.4 Binary Algebraic Operations and Majorisation.- II.5 Problems.- II.6 Notes and References.- III Variational Principles for Eigenvalues.- III.1 The Minimax Principle for Eigenvalues.- III.2 Weyl's Inequalities.- III.3 Wielandt's Minimax Principle.- III.4 Lidskii's Theorems.- III. 5 Eigenvalues of Real Parts and Singular Values.- III.6 Problems.- III.7 Notes and References.- IV Symmetric Norms.- IV.l Norms on ?n.- IV.2 Unitarily Invariant Norms on Operators on ?n.- IV.3 Lidskii's Theorem (Third Proof).- IV.4 Weakly Unitarily Invariant Norms.- IV.5 Problems.- IV.6 Notes and References.- V Operator Monotone and Operator Convex Functions.- V.1 Definitions and Simple Examples.- V.2 Some Characterisations.- V.3 Smoothness Properties.- V.4 Loewner's Theorems.- V.5 Problems.- V.6 Notes and References.- VI Spectral Variation of Normal Matrices.- VI. 1 Continuity of Roots of Polynomials.- VI. 2 Hermitian and Skew-Hermitian Matrices.- VI. 3 Estimates in the Operator Norm.- VI. 4 Estimates in the Frobenius Norm.- VI. 5 Geometry and Spectral Variation: the Operator Norm.- VI. 6 Geometry and Spectral Variation: wui Norms.- VI. 7 Some Inequalities for the Determinant.- VI. 8 Problems.- VI. 9 Notes and References.- VII Perturbation of Spectral Subspaces of Normal Matrices.- VII. 1 Pairs of Subspaces.- VII. 2 The Equation AX - XB = Y.- VII. 3 Perturbation of Eigenspaces.- VII. 4 A Perturbation Bound for Eigenvalues.- VII. 5 Perturbation of the Polar Factors.- VII. 6 Appendix: Evaluating the (Fourier) constants.- VII. 7 Problems.- VII. 8 Notes and References.- VIII Spectral Variation of Nonnormal Matrices.- VIII. 1 General Spectral Variation Bounds.- VIII. 4 Matrices with Real Eigenvalues.- VIII. 5 Eigenvalues with Symmetries.- VIII. 6 Problems.- VIII. 7 Notes and References.- IX A Selection of Matrix Inequalities.- IX. 1 Some Basic Lemmas.- IX. 2 Products of Positive Matrices.- IX. 3 Inequalities for the Exponential Function.- IX. 4 Arithmetic-Geometric Mean Inequalities.- IX. 5 Schwarz Inequalities.- IX. 6 The Lieb Concavity Theorem.- IX. 7 Operator Approximation.- IX. 8 Problems.- IX. 9 Notes and References.- X Perturbation of Matrix Functions.- X. 1 Operator Monotone Functions.- X. 2 The Absolute Value.- X. 3 Local Perturbation Bounds.- X. 4 Appendix: Differential Calculus.- X. 5 Problems.- X. 6 Notes and References.- References.
by "Nielsen BookData"