Moduli of supersingular Abelian varieties

書誌事項

Moduli of supersingular Abelian varieties

Ke-Zheng Li, Frans Oort

(Lecture notes in mathematics, 1680)

Springer, c1998

大学図書館所蔵 件 / 97

この図書・雑誌をさがす

注記

Includes bibliographical references (p. 106-111) and index

内容説明・目次

内容説明

Abelian varieties can be classified via their moduli. In positive characteristic the structure of the p-torsion-structure is an additional, useful tool. For that structure supersingular abelian varieties can be considered the most special ones. They provide a starting point for the fine description of various structures. For low dimensions the moduli of supersingular abelian varieties is by now well understood. In this book we provide a description of the supersingular locus in all dimensions, in particular we compute the dimension of it: it turns out to be equal to AEg.g/4UE, and we express the number of components as a class number, thus completing a long historical line where special cases were studied and general results were conjectured (Deuring, Hasse, Igusa, Oda-Oort, Katsura-Oort).

目次

Supersingular abelian varieties.- Some prerequisites about group schemes.- Flag type quotients.- Main results on S g,1.- Prerequisites about Dieudonne modules.- PFTQs of Dieudonne modules over W.- Moduli of rigid PFTQs of Dieudonne modules.- Some class numbers.- Examples on S g,1.- Main results on S g,d.- Proofs of the propositions on FTQs.- Examples on S g,d (d>1).- A scheme-theoretic definition of supersingularity.

「Nielsen BookData」 より

関連文献: 1件中  1-1を表示

詳細情報

ページトップへ