書誌事項

ルベーグ積分と関数解析

谷島賢二著

(講座数学の考え方 / 飯高茂 [ほか] 編集, 13)

朝倉書店, 2002.7

タイトル読み

ルベーグ セキブン ト カンスウ カイセキ

大学図書館所蔵 件 / 251

この図書・雑誌をさがす

注記

参考文献: p[259]-262

内容説明・目次

内容説明

「測度と積分」は調和解析、偏微分方程式、確率論や大域解析学などの解析学はもちろんのこと、およそ現代数学を学ぼうとするものにとって欠くことのできない基礎知識である。関数解析はこれら伝統的な解析学の問題を「関数を要素とする空間」とそのような空間のあいだの写像に関する問題と考え、これらに通常の数学の手法を適用して問題を解決しようとする方法である。関数解析における「関数を要素とする空間」の多くはルベーグ積分を用いて定義され、関数解析はルベーグ積分が活躍する舞台の一つである。本書はルベーグ積分の基本事項とそれに続く関数解析の初歩を学ぶための教科書で、2001、2002年の夏学期の東京大学理学部3年生に対する「測度と積分」、および2000年の4年生・大学院初年生に対する「関数解析学」の講義のために用意した二つのノートをもとにして書かれたものである。

目次

  • ルベーグ積分の考え方
  • 一次元ルベーグ測度
  • ルベーグ可測関数
  • ルベーグ積分
  • 微分と積分の関係
  • ルベーグ積分の抽象論
  • 測度空間の構成と拡張定理
  • 符号付き測度
  • ノルム空間とバナッハ空間
  • ルベーグ空間とソボレフ空間
  • ヒルベルト空間
  • 双対空間
  • ハーン・バナッハの定理・弱位相
  • フーリエ変換
  • 非有界作用素
  • レゾルベントとスペクトル
  • コンパクト作用素とそのスペクトル

「BOOKデータベース」 より

関連文献: 1件中  1-1を表示

詳細情報

ページトップへ