Finite structures with few types

著者

    • Cherlin, Gregory
    • Hrushovski, Ehud

書誌事項

Finite structures with few types

Gregory Cherlin and Ehud Hrushovski

(Annals of mathematics studies, 152)

Princeton University Press, 2003

  • : hbk
  • : pbk

大学図書館所蔵 件 / 46

この図書・雑誌をさがす

注記

Bibliography: p. [187]-189

Includes index

LCCN:200202980

内容説明・目次

巻冊次

: hbk ISBN 9780691113319

内容説明

This book applies model theoretic methods to the study of certain finite permutation groups, the automorphism groups of structures for a fixed finite language with a bounded number of orbits on 4-tuples. Primitive permutation groups of this type have been classified by Kantor, Liebeck, and Macpherson, using the classification of the finite simple groups. Building on this work, Gregory Cherlin and Ehud Hrushovski here treat the general case by developing analogs of the model theoretic methods of geometric stability theory. The work lies at the juncture of permutation group theory, model theory, classical geometries, and combinatorics. The principal results are finite theorems, an associated analysis of computational issues, and an 'intrinsic' characterization of the permutation groups (or finite structures) under consideration.The main finiteness theorem shows that the structures under consideration fall naturally into finitely many families, with each family parametrized by finitely many numerical invariants (dimensions of associated coordinating geometries). The authors provide a case study in the extension of methods of stable model theory to a nonstable context, related to work on Shelah's 'simple theories'. They also generalize Lachlan's results on stable homogeneous structures for finite relational languages, solving problems of effectivity left open by that case. Their methods involve the analysis of groups interpretable in these structures, an analog of Zilber's envelopes, and the combinatorics of the underlying geometries. Taking geometric stability theory into new territory, this book is for mathematicians interested in model theory and group theory.
巻冊次

: pbk ISBN 9780691113326

内容説明

This book applies model theoretic methods to the study of certain finite permutation groups, the automorphism groups of structures for a fixed finite language with a bounded number of orbits on 4-tuples. Primitive permutation groups of this type have been classified by Kantor, Liebeck, and Macpherson, using the classification of the finite simple groups. Building on this work, Gregory Cherlin and Ehud Hrushovski here treat the general case by developing analogs of the model theoretic methods of geometric stability theory. The work lies at the juncture of permutation group theory, model theory, classical geometries, and combinatorics. The principal results are finite theorems, an associated analysis of computational issues, and an "intrinsic" characterization of the permutation groups (or finite structures) under consideration. The main finiteness theorem shows that the structures under consideration fall naturally into finitely many families, with each family parametrized by finitely many numerical invariants (dimensions of associated coordinating geometries). The authors provide a case study in the extension of methods of stable model theory to a nonstable context, related to work on Shelah's "simple theories." They also generalize Lachlan's results on stable homogeneous structures for finite relational languages, solving problems of effectivity left open by that case. Their methods involve the analysis of groups interpretable in these structures, an analog of Zilber's envelopes, and the combinatorics of the underlying geometries. Taking geometric stability theory into new territory, this book is for mathematicians interested in model theory and group theory.

「Nielsen BookData」 より

関連文献: 1件中  1-1を表示

詳細情報

  • NII書誌ID(NCID)
    BA60525902
  • ISBN
    • 0691113319
    • 0691113327
  • 出版国コード
    us
  • タイトル言語コード
    eng
  • 本文言語コード
    eng
  • 出版地
    Princeton, N.J.
  • ページ数/冊数
    vi, 193 p.
  • 大きさ
    24 cm
  • 分類
  • 件名
  • 親書誌ID
ページトップへ