Bibliographic Information

Markov chains and invariant probabilities

Onésimo Hernández-Lerma, Jean Bernard Lasserre

(Progress in mathematics, v. 211)

Birkhäuser Verlag, c2003

Available at  / 65 libraries

Search this Book/Journal

Note

Bibliography: p. [193]-201

Index: p. [203]-205

Description and Table of Contents

Description

This book is about discrete-time, time-homogeneous, Markov chains (Mes) and their ergodic behavior. To this end, most of the material is in fact about stable Mes, by which we mean Mes that admit an invariant probability measure. To state this more precisely and give an overview of the questions we shall be dealing with, we will first introduce some notation and terminology. Let (X,B) be a measurable space, and consider a X-valued Markov chain ~. = {~k' k = 0, 1, ... } with transition probability function (t.pJ.) P(x, B), i.e., P(x, B) := Prob (~k+1 E B I ~k = x) for each x E X, B E B, and k = 0,1, .... The Me ~. is said to be stable if there exists a probability measure (p.m.) /.l on B such that (*) VB EB. /.l(B) = Ix /.l(dx) P(x, B) If (*) holds then /.l is called an invariant p.m. for the Me ~. (or the t.p.f. P).

Table of Contents

1 Preliminaries.- 1.1 Introduction.- 1.2 Measures and Functions.- 1.3 Weak Topologies.- 1.4 Convergence of Measures.- 1.5 Complements.- 1.6 Notes.- I Markov Chains and Ergodicity.- 2 Markov Chains and Ergodic Theorems.- 2.1 Introduction.- 2.2 Basic Notation and Definitions.- 2.3 Ergodic Theorems.- 2.4 The Ergodicity Property.- 2.5 Pathwise Results.- 2.6 Notes.- 3 Countable Markov Chains.- 3.1 Introduction.- 3.2 Classification of States and Class Properties.- 3.3 Limit Theorems.- 3.4 Notes.- 4 Harris Markov Chains.- 4.1 Introduction.- 4.2 Basic Definitions and Properties.- 4.3 Characterization of Harris recurrence.- 4.4 Sufficient Conditions for P.H.R.- 4.5 Harris and Doeblin Decompositions.- 4.6 Notes.- 5 Markov Chains in Metric Spaces.- 5.1 Introduction.- 5.2 The Limit in Ergodic Theorems.- 5.3 Yosida's Ergodic Decomposition.- 5.4 Pathwise Results.- 5.5 Proofs.- 5.6 Notes.- 6 Classification of Markov Chains via Occupation Measures.- 6.1 Introduction.- 6.2 A Classification.- 6.3 On the Birkhoff Individual Ergodic Theorem.- 6.4 Notes.- II Further Ergodicity Properties.- 7 Feller Markov Chains.- 7.1 Introduction.- 7.2 Weak-and Strong-Feller Markov Chains.- 7.3 Quasi Feller Chains.- 7.4 Notes.- 8 The Poisson Equation.- 8.1 Introduction.- 8.2 The Poisson Equation.- 8.3 Canonical Pairs.- 8.4 The Cesaro-Averages Approach.- 8.5 The Abelian Approach.- 8.6 Notes.- 9 Strong and Uniform Ergodicity.- 9.1 Introduction.- 9.2 Strong and Uniform Ergodicity.- 9.3 Weak and Weak Uniform Ergodicity.- 9.4 Notes.- III Existence and Approximation of Invariant Probability Measures.- 10 Existence of Invariant Probability Measures.- 10.1 Introduction and Statement of the Problems.- 10.2 Notation and Definitions.- 10.3 Existence Results.- 10.4 Markov Chains in Locally Compact Separable Metric Spaces.- 10.5 Other Existence Results in Locally Compact Separable Metric Spaces.- 10.6 Technical Preliminaries.- 10.7 Proofs.- 10.8 Notes.- 11 Existence and Uniqueness of Fixed Points for Markov Operators.- 11.1 Introduction and Statement of the Problems.- 11.2 Notation and Definitions.- 11.3 Existence Results.- 11.4 Proofs.- 11.5 Notes.- 12 Approximation Procedures for Invariant Probability Measures.- 12.1 Introduction.- 12.2 Statement of the Problem and Preliminaries.- 12.3 An Approximation Scheme.- 12.4 A Moment Approach for a Special Class of Markov Chains.- 12.5 Notes.

by "Nielsen BookData"

Related Books: 1-1 of 1

Details

  • NCID
    BA61293507
  • ISBN
    • 3764370009
  • Country Code
    sz
  • Title Language Code
    eng
  • Text Language Code
    eng
  • Place of Publication
    Basel
  • Pages/Volumes
    xvi, 205 p.
  • Size
    24 cm
  • Parent Bibliography ID
Page Top