Heegner modules and elliptic curves

Author(s)

    • Brown, Martin L.

Bibliographic Information

Heegner modules and elliptic curves

M.L. Brown

(Lecture notes in mathematics, 1849)

Springer, c2004

Available at  / 70 libraries

Search this Book/Journal

Note

Includes bibliographical references (p. [507]-510) and index

Description and Table of Contents

Description

Heegner points on both modular curves and elliptic curves over global fields of any characteristic form the topic of this research monograph. The Heegner module of an elliptic curve is an original concept introduced in this text. The computation of the cohomology of the Heegner module is the main technical result and is applied to prove the Tate conjecture for a class of elliptic surfaces over finite fields, this conjecture is equivalent to the Birch and Swinnerton-Dyer conjecture for the corresponding elliptic curves over global fields.

Table of Contents

Preface.- Introduction.- Preliminaries.- Bruhat-Tits trees with complex multiplication.- Heegner sheaves.- The Heegner module.- Cohomology of the Heegner module.- Finiteness of the Tate-Shafarevich groups.- Appendix A.: Rigid analytic modular forms.- Appendix B.: Automorphic forms and elliptic curves over function fields.- References.- Index.

by "Nielsen BookData"

Related Books: 1-1 of 1

Details

  • NCID
    BA68105853
  • ISBN
    • 3540222901
  • LCCN
    2004107464
  • Country Code
    gw
  • Title Language Code
    eng
  • Text Language Code
    eng
  • Place of Publication
    Berlin
  • Pages/Volumes
    x, 517 p.
  • Size
    24 cm
  • Parent Bibliography ID
Page Top